Sinir ağı eğitimi aşağıdaki adımları içerir: 1. Veri Toplama ve Ön İşleme: Eğitim ve test için verilerin toplanması, düzenlenmesi, temizlenmesi ve eksik değerlerin ele alınması. 2. Sinir Ağı Mimarisi Seçimi: Sorununuza uygun mimari türünün belirlenmesi (örneğin, ileri beslemeli sinir ağı, evrişimli sinir ağı, tekrarlayan sinir ağı). 3. Model Başlatma: Sinir ağının ağırlık ve önyargılar gibi parametrelerinin başlatılması. 4. İleri Yayılım: Giriş verilerinin ağ üzerinden geçirilerek tahminlerin yapılması. 5. Kayıp Hesaplama: Tahmin edilen çıktının gerçek çıktıyla karşılaştırılarak kaybın hesaplanması. 6. Geri Yayılım: Optimizasyon algoritması (örneğin, gradyan iniş) kullanılarak ağın ağırlıklarının güncellenmesi. 7. Yineleme: Modelin performansını artırmak için ileri yayılım, kayıp hesaplama ve geri yayılım adımlarının tekrarlanması. Bu süreç, genellikle TensorFlow, PyTorch gibi derin öğrenme çerçeveleri kullanılarak gerçekleştirilir.