Sinir ağı eğitimi, genellikle denetimli öğrenme yöntemiyle yapılır. Eğitim süreci şu adımları içerir: 1. Sinir Ağı Mimarisinin Tanımlanması: Ağ katmanlarının sayısı, türü (tam bağlantılı, evrişimli, yinelemeli), her katmandaki düğüm sayısı ve diğer parametreler belirlenir. 2. Başlangıç Ağırlıklarının Atanması: Genellikle rastgele, ortalama 0 ve standart sapması 1 olan değerlerle başlatılır. 3. Eğitim Verilerinin Hazırlanması: Girdi desenleri ve bilinen çıktılardan oluşan bir veri seti hazırlanır. 4. İleri Geçiş (Forward Pass): Girdi desenleri ağa sunulur ve çıktı katmanına iletilir. 5. Hata Hesaplaması: Hesaplanan çıktı, gerçek veya istenen çıktı ile karşılaştırılır. 6. Geri Geçiş (Backward Pass): Hata, ağırlıkların ayarlanması için geriye doğru yayılır. 7. Parametre Ayarlaması: Ağ parametreleri, sapma belirli bir eşik değerin altına düşene veya belirlenen eğitim yineleme sayısına ulaşılana kadar ayarlanır. Eğitim için MATLAB, Simulink, XERION, SNNS, SAS gibi yazılımlar kullanılabilir.