Karmaşık kök formülü, ikinci dereceden bir denklemin diskriminantı (Δ) negatif olduğunda (Δ < 0) kullanılır. Bu durumda, kökler şu formüle göre bulunur: x = [-b ± √(b² – 4ac)] / 2a. Burada karekök ifadesi negatif olduğundan, √(-k) ifadesi oluşur ve kökler karmaşık sayı biçiminde olur. Eğer denklemin katsayıları gerçek sayı ise, karmaşık kökler daima birbirinin eşleniğidir. Örnek: x² + 4x + 5 = 0 denkleminde: a = 1, b = 4, c = 5; Δ = 4² – 4 × 1 × 5 = 16 – 20 = -4; x = [-4 ± √(-4)] / 2; x = [-4 ± 2i] / 2; x = -2 ± i. Bu denklemin kökleri -2 + i ve -2 – i olmak üzere iki karmaşık sayıdır.