• Yazeka

    Arama sonuçlarına göre oluşturuldu

    Regresyon, istatistiksel modelleme ve veri analizi süreçlerinde, bağımlı bir değişken (sonuç) ile bir veya daha fazla bağımsız değişken (girdi) arasındaki ilişkiyi inceleyen bir tekniktir 12.
    Temel amacı, mevcut verilerden yola çıkarak bağımlı değişkenin gelecekteki değerlerini tahmin etmek veya açıklamaktır 1.
    Bazı regresyon türleri:
    • Doğrusal Regresyon: En yaygın tür olup, değişkenler arasındaki ilişki bir düz çizgiyle temsil edilir 13.
    • Lojistik Regresyon: Bağımlı değişkenin kategorik olduğu durumlarda kullanılır 13.
    • Çoklu Doğrusal Regresyon: Birden fazla bağımsız değişkenin etkisinin analiz edildiği bir modeldir 13.
    Kullanım alanları: finans, ekonomi, sağlık, pazarlama ve mühendislik gibi birçok sektörü kapsar 23.
    5 kaynaktan alınan bilgiyle göre:

    Konuyla ilgili materyaller

    Regresyon denkleminde a ve b nedir?

    Regresyon denkleminde a ve b, regresyon katsayılarını ifade eder. - a, doğrunun y eksenini kestiği noktayı gösterir. - b, doğrunun eğimini temsil eder.

    Regresyon analizi formülü nedir?

    Regresyon analizi formülü şu şekilde ifade edilir: Y = MX + b. Burada: - Y, regresyon denkleminin bağımlı değişkenidir; - M, regresyon denkleminin eğimidir; - X, regresyon denkleminin bağımsız değişkenidir; - b, denklemin sabitidir.

    Lojistik regresyon nedir?

    Lojistik regresyon, makine öğreniminde yaygın olarak kullanılan bir istatistiksel yöntemdir ve ikili sınıflandırma problemleri için temel bir algoritmadır. Temel özellikleri: - Amaç: Bir girdi verisinin belirli bir kategoriye ait olma olasılığını tahmin etmek. - Veri türü: Bağımsız değişkenler (özellikler) ve ikili bağımlı değişken (örneğin, 0 veya 1, evet veya hayır). - Modelleme: Logistik fonksiyon (genellikle sigmoid fonksiyonu) kullanılarak, doğrusal bir kombinasyonun çıktısı 0 ile 1 arasında bir olasılığa dönüştürülür. - Kullanım alanları: Tıp, finans, pazarlama gibi çeşitli alanlarda gerçek dünya uygulamalarında kullanılır. Türleri: Lojistik regresyon, ikili, multinominal ve sıralı lojistik regresyon gibi farklı türlere ayrılabilir.

    Excelde regresyon nasıl yapılır?

    Excel'de regresyon analizi yapmak için aşağıdaki adımları izlemek gerekmektedir: 1. Verileri Düzenleme: Bağımlı ve bağımsız değişkenleri ayrı sütunlara yerleştirerek verileri bir tablo halinde düzenleyin. 2. Veri Çözümleme Araçlarını Etkinleştirme: Excel'in üst menüsünde "Dosya" > "Seçenekler" > "Eklentiler" yolunu izleyerek "Excel Eklentileri" bölümünden "Veri Çözümleme" seçeneğini aktif hale getirin. 3. Regresyon Analizini Gerçekleştirme: "Veri" sekmesinde "Veri Çözümleme" seçeneğine tıklayın ve açılan listeden "Regresyon"u seçin. 4. Giriş Aralıklarını Belirleme: "Y Girişi" alanına bağımlı değişkeni, "X Girişi" alanına ise bağımsız değişkenleri girin. 5. Çıktı Konumunu Belirleme: Sonuçları yeni bir çalışma sayfasına veya mevcut bir sayfaya yerleştirmek için "Çıktı Aralığı" alanını seçin. 6. Sonuçları Yorumlama: Excel, analiz sonuçlarını R-kare değeri, katsayılar ve ANOVA tablosu gibi istatistiksel özetler eşliğinde verecektir. Regresyon analizi ile ilgili daha detaylı bilgi ve ileri düzey teknikler için Excel'in resmi kaynaklarına ve uzmanlara başvurulması önerilir.

    Regresyon analizi ne zaman kullanılır?

    Regresyon analizi, çeşitli alanlarda veri odaklı içgörüler elde etmek ve bilinçli kararlar almak için kullanılır. İşte bazı kullanım alanları: Finans ve ekonomi: Hisse senedi fiyatlarını tahmin etmek, makroekonomik veriler arasındaki ilişkileri analiz etmek. Sağlık: Hastalıkların yayılma hızını, risk faktörlerini ve tedavinin etkinliğini değerlendirmek. Pazarlama: Satış verileri ve tüketici trendlerini analiz ederek stratejileri optimize etmek. Mühendislik ve doğa bilimleri: Ürünlerin satışlarını, fiyat, reklam harcamaları ve mevsimsel etkilerle ilişkilendirmek. Eğitim: Öğrencilerin akademik başarılarını etkileyen faktörleri analiz etmek. Ayrıca, regresyon analizi makine öğrenimi ve büyük veri uygulamalarında da yaygın olarak kullanılır.

    Regresyon denkleminde -0.5 ne anlama gelir?

    Regresyon denkleminde -0.5 katsayısı, bağımsız değişkenin (x) 1 birim değişmesi durumunda bağımlı değişkenin (y) 0.5 birim azalacağını ifade eder.

    Regresyon analizinde -1 ve +1 ne anlama gelir?

    Regresyon analizinde -1 ve +1 değerleri, korelasyon katsayısının sınırlarını ifade eder. - r = -1 değeri, değişkenler arasında negatif yönde çok yüksek bir ilişki olduğunu gösterir. - r = +1 değeri ise, değişkenler arasında pozitif yönde çok yüksek bir ilişki olduğunu ifade eder.