• Buradasın

    Yinelemeli sinir ağı nedir?

    Yazeka

    Arama sonuçlarına göre oluşturuldu

    Yinelemeli sinir ağı (YSA), sıralı veri girişini işlemek ve belirli bir sıralı veri çıkışına dönüştürmek için eğitilmiş derin öğrenme modelidir 2.
    YSA'ların temel özellikleri:
    • Nöronlar: Giriş, çıktı ve gizli katmanlar halinde düzenlenmiştir 23.
    • Geri bildirim döngüleri: Bilgiyi ağ içinde saklamasını sağlar 14.
    • Uzun vadeli bağımlılıklar: Geçmişteki verileri hatırlayarak gelecekteki tahminleri iyileştirir 34.
    Kullanım alanları:
    • Doğal dil işleme: Metin sınıflandırma, dil çevirisi ve duygu analizi 34.
    • Zaman serisi tahmini: Hisse senedi fiyat tahmini ve anomali tespiti 4.
    • Görüntü tanıma: Evrişimli sinir ağları ile birlikte kullanılır 5.

    Konuyla ilgili materyaller

    Tekrarlayan sinir ağları hangi tür veri yapılarını işler?

    Tekrarlayan sinir ağları (RNN), zaman serisi verileri ve doğal dil işleme gibi ardışık veri yapılarını işler.

    Sinir ağı nedir?

    Sinir ağı (neural network), insan beyninin bilgiyi işleme şeklinden esinlenerek geliştirilmiş bir yapay zeka ve makine öğrenimi modelidir. Temel yapısı: Girdi katmanı. Gizli katmanlar. Çıktı katmanı. Çalışma prensibi: Eğitim. Tahmin ve sınıflandırma. Kullanım alanları: Görüntü tanıma. Doğal dil işleme. Tıbbi tanı. Lojistik optimizasyonu. Siber güvenlik.

    Ağ nedir ve nasıl çalışır?

    Ağ (network), belirli kurallar çerçevesinde iletişim kurabilen cihazların oluşturduğu yapıdır. Ağın çalışma prensibi: Cihazların tanımlanması. Veri iletimi. Yönlendirme. Merkezi yönetim. Ağın temel işlevleri: Dosya paylaşımı. Donanım paylaşımı. Yazılım paylaşımı. Güvenlik.

    Yapay sinir ağı kaç çeşittir?

    Yapay sinir ağları, mimari yapılarına göre farklı türlerde sınıflandırılabilir: 1. İleri Beslemeli Sinir Ağları (Feedforward Neural Networks). 2. Tekrarlı Sinir Ağları (Recurrent Neural Networks – RNN). 3. Karma Sinir Ağları (Hybrid Neural Networks). 4. Evrişimli Sinir Ağları (Convolutional Neural Networks – CNN). 5. Transformer Ağları. Ayrıca, yapay sinir ağları öğrenme algoritmalarına göre de danışmanlı, danışmansız ve takviyeli öğrenme olarak üçe ayrılır.

    Yapay sinir ağlarının temel ilkeleri nelerdir?

    Yapay sinir ağlarının temel ilkeleri şunlardır: 1. Nöronlar (Neurons): Girişleri alan temel birimlerdir ve her nöron bir eşik değeri ve aktivasyon fonksiyonu tarafından yönetilir. 2. Bağlantılar (Connections): Nöronlar arasındaki bilgi taşıyan bağlantılardır ve ağırlıklar ve önyargılar ile düzenlenir. 3. İletim Fonksiyonları (Propagation Functions): Verinin nöron katmanları arasında işlenmesini ve iletilmesini sağlar. 4. Öğrenme Kuralı (Learning Rule): Ağın doğruluğunu artırmak için ağırlıklar ve önyargıları zaman içinde ayarlayan yöntemdir. Çalışma süreci üç ana aşamadan oluşur: 1. İleri Yayılım (Forward Propagation): Girdi verileri ağa beslenir ve katmanlar boyunca ilerler. 2. Kayıp Hesaplama (Loss Calculation): Çıktı katmanındaki sonuçlar, gerçek değerlerle karşılaştırılır ve hata hesaplanır. 3. Geri Yayılım (Backpropagation): Hata, geri yayılım algoritması ile ağ boyunca geriye doğru yayılır ve ağırlıklar güncellenir. Yapay sinir ağları, büyük miktarda veriden öğrenme ve karmaşık problemleri çözme yetenekleriyle kritik bir rol oynar.

    Yapay sinir ağları nedir?

    Yapay sinir ağları (YSA), insan beyninin bilgi işleme tekniğinden esinlenerek geliştirilmiş bir sinir ağı ve bilgi işlem teknolojisidir. YSA'nın bazı özellikleri: Makine öğrenmesi. Bilgi saklama. Doğrusal olmayan ilişkileri modelleme. Paralel işlem. Hata toleransı. YSA, genellikle paralel olarak çalışan ve katmanlar halinde düzenlenmiş çok sayıda işlemciden oluşur.

    Yapay sinir ağları ile tahmin nasıl yapılır?

    Yapay sinir ağları ile tahmin yapmak için aşağıdaki adımlar izlenir: 1. Veri Seti Oluşturma. 2. Normalizasyon. 3. Ağın Eğitilmesi. 4. Modelin Test Edilmesi. Bazı tahmin amaçlı kullanılan yapay sinir ağları şunlardır: geri yayılım (back-propagation); yönlendirilmiş rastgele tarama (directed random search); yüksek dereceli sinir ağları (higher order neural networks); SOM (self-organizing map into back-propagation); radyal tabanlı fonksiyon (radial basis function, RBF). Yapay sinir ağları ile tahmin yapmak için MATLAB, nntool, Python gibi araçlar kullanılabilir.