• Buradasın

    Yapay sinir ağı kaç çeşittir?

    Yazeka

    Arama sonuçlarına göre oluşturuldu

    Yapay sinir ağları, mimari yapılarına göre farklı türlerde sınıflandırılabilir 1:
    1. İleri Beslemeli Sinir Ağları (Feedforward Neural Networks) 14. Verilerin tek yönde akışını sağlar 1.
    2. Tekrarlı Sinir Ağları (Recurrent Neural Networks – RNN) 13. Zaman serisi verileri işlerken faydalıdır 1.
    3. Karma Sinir Ağları (Hybrid Neural Networks) 1. Farklı yapay sinir ağı türlerini birleştirerek oluşturulur 1.
    4. Evrişimli Sinir Ağları (Convolutional Neural Networks – CNN) 13. Özellikle görüntü işleme görevlerinde kullanılır 1.
    5. Transformer Ağları 1. Doğal dil işleme görevlerinde kullanılır 1.
    Ayrıca, yapay sinir ağları öğrenme algoritmalarına göre de danışmanlı, danışmansız ve takviyeli öğrenme olarak üçe ayrılır 5.
    5 kaynaktan alınan bilgiyle göre:

    Konuyla ilgili materyaller

    Yapay sinir ağları nedir?

    Yapay sinir ağları (YSA), insan beyninin bilgi işleme tekniğinden esinlenerek geliştirilmiş bir sinir ağı ve bilgi işlem teknolojisidir. YSA'nın bazı özellikleri: Makine öğrenmesi. Bilgi saklama. Doğrusal olmayan ilişkileri modelleme. Paralel işlem. Hata toleransı. YSA, genellikle paralel olarak çalışan ve katmanlar halinde düzenlenmiş çok sayıda işlemciden oluşur.

    Yapay zeka nedir ve örnekleri?

    Yapay zeka (YZ), bilgisayar sistemlerinin insan zekasına özgü görevleri yerine getirmesini sağlayan bir bilgisayar bilimi dalıdır. Bazı YZ örnekleri: Sesli asistanlar: Siri, Alexa, Google Asistan. Otonom sürüş sistemleri: Tesla'nın otopilot özelliği. Sosyal medya haber akışları: Facebook, Instagram, Twitter. Müzik ve medya akış hizmetleri: Spotify, Netflix, YouTube. Sağlık sektörü: Hastalıkların erken tespiti ve teşhisi. Kendi kendine öğrenen sistemler: Google'ın AlphaStar ürünü, StarCraft 2 oyununu kendine karşı oynayarak kendini geliştirdi. YZ türleri: Dar YZ: Belirli bir görevi yerine getirmek üzere tasarlanmış ve eğitilmiş YZ. Genel YZ (AGI): Farklı alanlardaki bilgileri anlama, öğrenme ve uygulama yeteneğine sahip YZ. Süper YZ: İnsan zekasını aşan ve her görevi insandan daha iyi yerine getirebilen YZ.

    Yapay sinir ağlarının temel ilkeleri nelerdir?

    Yapay sinir ağlarının temel ilkeleri şunlardır: 1. Nöronlar (Neurons): Girişleri alan temel birimlerdir ve her nöron bir eşik değeri ve aktivasyon fonksiyonu tarafından yönetilir. 2. Bağlantılar (Connections): Nöronlar arasındaki bilgi taşıyan bağlantılardır ve ağırlıklar ve önyargılar ile düzenlenir. 3. İletim Fonksiyonları (Propagation Functions): Verinin nöron katmanları arasında işlenmesini ve iletilmesini sağlar. 4. Öğrenme Kuralı (Learning Rule): Ağın doğruluğunu artırmak için ağırlıklar ve önyargıları zaman içinde ayarlayan yöntemdir. Çalışma süreci üç ana aşamadan oluşur: 1. İleri Yayılım (Forward Propagation): Girdi verileri ağa beslenir ve katmanlar boyunca ilerler. 2. Kayıp Hesaplama (Loss Calculation): Çıktı katmanındaki sonuçlar, gerçek değerlerle karşılaştırılır ve hata hesaplanır. 3. Geri Yayılım (Backpropagation): Hata, geri yayılım algoritması ile ağ boyunca geriye doğru yayılır ve ağırlıklar güncellenir. Yapay sinir ağları, büyük miktarda veriden öğrenme ve karmaşık problemleri çözme yetenekleriyle kritik bir rol oynar.

    Sinir ağı nedir?

    Sinir ağı (neural network), insan beyninin bilgiyi işleme şeklinden esinlenerek geliştirilmiş bir yapay zeka ve makine öğrenimi modelidir. Temel yapısı: Girdi katmanı. Gizli katmanlar. Çıktı katmanı. Çalışma prensibi: Eğitim. Tahmin ve sınıflandırma. Kullanım alanları: Görüntü tanıma. Doğal dil işleme. Tıbbi tanı. Lojistik optimizasyonu. Siber güvenlik.

    Yapay sinir ağı nasıl çalışır?

    Yapay sinir ağları (YSA), insan beynindeki sinir hücrelerinin çalışma şeklini taklit etmeye çalışan matematiksel modellerdir. YSA'nın çalışma şekli şu adımlardan oluşur: 1. Girdi (input) alma. 2. İşleme. 3. Çıktı (output) üretme. Bu süreçte YSA'nın kullandığı katmanlar şunlardır: Giriş katmanı. Gizli katmanlar. Çıkış katmanı. YSA, deneme-yanılma ve geri bildirim yoluyla öğrenir.

    Makine öğrenmesinde hangi yapay sinir ağı kullanılır?

    Makine öğrenmesinde kullanılan bazı yapay sinir ağları: Perceptron (Algılayıcı). Çok katmanlı algılayıcılar. Derin sinir ağları. Makine öğrenmesi ve derin öğrenme için en çok kullanılan programlama dillerinden biri Python'dur.

    Yapay zeka türleri nelerdir?

    Yapay zeka türleri şu şekilde sınıflandırılabilir: Dar (Zayıf) Yapay Zeka: Belirli bir görevi yerine getirmek üzere tasarlanmış ve eğitilmiştir. Genel Yapay Zeka (AGI): İnsan düzeyinde bilişsel yeteneklere sahip olup, farklı alanlardaki bilgileri anlama, öğrenme ve uygulama yeteneğine sahiptir. Süper Yapay Zeka (ASI): İnsan zekasını aşan, kendi kendine öğrenen ve gelişen bir yapay zeka türüdür. Reaktif Makineler: Geçmiş deneyimleri saklamaz, belirli görevleri yerine getirmek için tasarlanmıştır. Sınırlı Hafızalı Makineler: Geçmiş deneyimleri veya verileri kısa bir süreliğine saklayabilir. Zihin Teorisi: İnsanların düşüncelerini, duygularını ve niyetlerini anlama yeteneğine sahiptir. Özbilinçli Yapay Zeka: Kendi bilincine ve farkındalığına sahiptir. Ayrıca, derin öğrenme, makine öğrenimi ve doğal dil işleme gibi yapay zeka alt dalları da bulunmaktadır.