• Buradasın

    Makine Öğrenmesi'nde kaç çeşit öğrenme vardır?

    Yazeka

    Arama sonuçlarına göre oluşturuldu

    Makine Öğrenmesi'nde üç ana çeşit öğrenme vardır:
    1. Denetimli Öğrenme (Supervised Learning): Algoritmaların geliştirici tarafından denetlendiği, etiketli veriler kullanılarak olayların ilişkisinin ve kuralların öğrenildiği yöntemdir 12.
    2. Denetimsiz Öğrenme (Unsupervised Learning): Etiketli verilerin olmadığı, değişkenler arasındaki ilişkilerin keşfedilerek modellerin oluşturulduğu yaklaşımdır 12.
    3. Pekiştirmeli Öğrenme (Reinforcement Learning): Bir aracının çevresiyle etkileşim kurarak ödül veya ceza aldığı, bu şekilde en iyi eylemi öğrenmeye çalıştığı yöntemdir 12.
    5 kaynaktan alınan bilgiyle göre:

    Konuyla ilgili materyaller

    Makine öğrenimi nedir?

    Makine öğrenimi, bilgisayarların verilerden öğrenerek belirli görevleri otomatik olarak yerine getirmesine olanak tanıyan bir yapay zeka dalıdır. Bu öğrenme süreci, algoritmalar ve matematiksel modeller aracılığıyla gerçekleştirilir. Makine öğreniminin bazı türleri: - Denetimli öğrenme: Etiketli veri kullanarak model eğitme. - Denetimsiz öğrenme: Etiketlenmemiş veri kullanarak model eğitme. - Pekiştirmeli öğrenme: Bir ajan ve çevre arasındaki etkileşim yoluyla öğrenme. - Derin öğrenme: Çok katmanlı yapay sinir ağlarını kullanarak veriden öğrenme. Kullanım alanları: Finans, sağlık, perakende, medya, eğlence ve finansal hizmetler gibi birçok sektörde yaygın olarak kullanılır.

    Gözetimsiz makine öğrenmesi ne işe yarar?

    Gözetimsiz makine öğrenmesi, etiketlenmemiş veri kümelerini analiz ederek veri grupları arasındaki kalıpları ve ilişkileri ortaya çıkarır. Bu yöntem, insan müdahalesine ihtiyaç duymadan benzerlikleri ve farklılıkları keşfeder. Gözetimsiz makine öğrenmesinin bazı kullanım alanları: - Müşteri segmentasyonu: Birbirine benzer kullanıcıları tespit eder. - Öneri sistemleri: Kullanıcılara kişiselleştirilmiş öneriler sunar. - Sahtekarlık tespiti: Anomali içeren alanlarda dolandırıcılığı tespit eder. - Tıbbi görüntüleme: Tıbbi görüntüleri analiz ederek teşhis koyar.

    Makine öğrenmesi lineer model nedir?

    Lineer model, makine öğreniminde regresyon modelleri kapsamında yer alan bir model türüdür. Lineer regresyon modeli, sayısal bir değeri tahmin etmek için kullanılır ve genellikle aşağıdaki alanlarda uygulanır: - Ev fiyatı tahmini: Metrekare, posta kodu, yatak odası ve banyo sayısı gibi değişkenlere dayanarak evin fiyatını tahmin eder. - Satış tahmini: Gelecekteki satış miktarlarını öngörür. - Zaman serisi analizi: Zaman içindeki veri eğilimlerini analiz ederek gelecekteki değerleri tahmin eder.

    Makine öğrenmesi aşamaları nelerdir?

    Makine öğrenmesi süreci genellikle aşağıdaki aşamalardan oluşur: 1. Problem Belirleme: Neyi öngörmeniz gerektiğini ve bu tahminleri yapmak için hangi gözlem verilerine sahip olmanız gerektiğini belirlemek. 2. Veri Toplama: Yapılandırılmış veya yapılandırılmamış verileri toplayarak bir veri seti oluşturmak. 3. Veri Hazırlama: Verileri makine öğrenimi için uygun şekilde hazırlamak, veriler arası anlamlı değişkenler oluşturmak. 4. Model Seçimi: Probleminizi en iyi temsil edecek ve verilerinize uygun olan modeli seçmek. 5. Eğitim, Doğrulama ve Test Verilerinin Ayrılması: Verileri, modelin çıktıyı öngörme yeteneğini kademeli olarak geliştirmek için eğitim, doğrulama ve test verisi olarak ayırmak. 6. Modelin Değerlendirilmesi: Modelin eğitim ve doğrulama verileriyle eğitilip, test verisi ile doğrulanması. 7. Parametre Ayarı: Elde edilen sonuçların değerlendirilmesinin ardından sonuçların daha da iyileştirilip iyileştirilemeyeceğine bakmak. 8. Tahmin: Modelin görmediği veriler ile tahmin yapmak.

    Makine öğrenme modeli nasıl eğitilir?

    Makine öğrenme modeli eğitimi genellikle şu adımları içerir: 1. Veri Toplama ve Hazırlık: Geniş ve temiz bir veri seti toplanır, ardından veri temizleme, eksik verilerin doldurulması ve verilerin normalizasyonu gibi işlemler yapılır. 2. Özellik Seçimi: Modelin doğru sonuçlar verebilmesi için en önemli özellikler seçilir. 3. Modelin Eğitilmesi ve Değerlendirilmesi: Seçilen algoritma, eğitim verisi üzerinde çalıştırılarak model eğitilir ve modelin doğruluğu, test verileri kullanılarak ölçülür. 4. Hiperparametre Optimizasyonu: Modelin performansını artırmak için hiperparametreler ayarlanır. 5. Modelin Dağıtımı: Model, yeni verilerle ilgili tahminlerde bulunmak üzere üretim ortamına entegre edilir. Bu süreç, makine öğrenme modelinin daha etkili ve doğru çalışmasını sağlamak için sürekli izleme ve bakım gerektirir.

    AI ve makine öğrenmesi aynı şey mi?

    Yapay Zeka (AI) ve Makine Öğrenmesi (ML) aynı şey değildir, ancak birbirleriyle yakından ilişkilidirler. Yapay Zeka, makinelerin insan benzeri zeka sergileyerek görevleri yerine getirmesini sağlayan geniş bir teknoloji alanıdır. Makine Öğrenmesi ise, yapay zekanın bir alt kümesi olarak, makinelerin verilerden öğrenmesini ve açıkça programlanmadan performanslarını geliştirmesini sağlar.

    Makine öğrenmesi ve derin öğrenme hangi durumlarda kullanılır?

    Makine öğrenmesi ve derin öğrenme çeşitli durumlarda kullanılır: Makine Öğrenmesi Kullanım Alanları: 1. Finans: Dolandırıcılık tespiti, kredi riski yönetimi. 2. Sağlık: Tıbbi bilgi yönetimi, hastalık teşhisi ve tedavisi. 3. Medya: Sosyal medya kişiselleştirme, uygunsuz içeriği filtreleme. 4. Perakende: Satış optimizasyonu, bireyselleştirilmiş alışveriş önerileri. 5. Günlük Hayat: Sesli asistanlar, öneri sistemleri. Derin Öğrenme Kullanım Alanları: 1. Görüntü Tanıma: Otonom araçlar, yüz tanıma sistemleri. 2. Dil İşleme: Metin çevirisi, doğal dil işleme. 3. Kişiselleştirilmiş Tıp: Yeni tedavi yöntemleri geliştirme. 4. Siber Güvenlik: Gelişmiş tehdit tespiti. 5. Eğitim: Eğitim materyallerinin otomatik etiketlenmesi.