• Buradasın

    Makine öğrenmesi ders notları nelerdir?

    Yazeka

    Arama sonuçlarına göre oluşturuldu

    Makine öğrenmesi ders notları için aşağıdaki kaynaklar kullanılabilir:
    • kitap.eba.gov.tr sitesinde "Yapay Zekâ ve Makine Öğrenmesi" başlıklı ders notları bulunmaktadır 1.
    • ckk.com.tr sitesinde "Makine Öğrenmesi Algoritmaları" başlıklı bir kitap mevcuttur 2.
    • medium.com sitesinde "Adım Adım Makine Öğrenmesi Bölüm 1: Makine Öğrenmesi Nedir?" başlıklı bir yazı yer almaktadır 3.
    • ceng.cu.edu.tr sitesinde makine öğrenmesi ile ilgili ders notları bulunmaktadır 4.
    • adm.atauni.edu.tr sitesinde "Lojistik Bilgi Sistemleri 12. Hafta Ders Notu" başlıklı bir kaynak mevcuttur 5.
    Ayrıca, Python programlama dili kullanılarak makine öğrenmesi geliştirmek için çeşitli çevrimiçi eğitim platformları ve dokümanlar da mevcuttur.
    5 kaynaktan alınan bilgiyle göre:

    Konuyla ilgili materyaller

    Makine Öğrenmesi'nde kaç çeşit öğrenme vardır?

    Makine Öğrenmesi'nde üç ana çeşit öğrenme vardır: 1. Denetimli Öğrenme (Supervised Learning): Algoritmaların geliştirici tarafından denetlendiği, etiketli veriler kullanılarak olayların ilişkisinin ve kuralların öğrenildiği yöntemdir. 2. Denetimsiz Öğrenme (Unsupervised Learning): Etiketli verilerin olmadığı, değişkenler arasındaki ilişkilerin keşfedilerek modellerin oluşturulduğu yaklaşımdır. 3. Pekiştirmeli Öğrenme (Reinforcement Learning): Bir aracının çevresiyle etkileşim kurarak ödül veya ceza aldığı, bu şekilde en iyi eylemi öğrenmeye çalıştığı yöntemdir.

    Ai ve makine öğrenmesi aynı şey mi?

    Hayır, yapay zeka (AI) ve makine öğrenmesi (ML) aynı şey değildir; makine öğrenmesi, yapay zekanın bir alt kümesidir. Yapay zeka, bir bilgisayar sisteminin öğrenme ve sorun çözme gibi insana özgü bilişsel işlevleri taklit edebilme becerisidir. Makine öğrenmesi ise, bilgisayar sistemlerinin karmaşık görevleri açık talimatlar olmadan gerçekleştirmek için kullanacağı algoritmalar ve istatistiksel modeller geliştirme bilimidir.

    Makine öğrenmesi ve derin öğrenme hangi durumlarda kullanılır?

    Makine Öğrenmesi ve Derin Öğrenmenin Kullanım Durumları: Makine Öğrenmesi: Yapılandırılmış veri üzerinde çalışan basit problemler için uygundur. Sınıflandırma, tahmin, öneri sistemleri, müşteri segmentasyonu ve spam tespiti gibi alanlarda kullanılır. Örneğin, bir şirket, önceki müşteri kaybı verilerine dayanarak bir müşterinin abonelikten ne zaman çıkacağını tahmin etmek için makine öğrenmesi kullanabilir. Derin Öğrenme: Yapılandırılmamış veriler ve karmaşık problemler için idealdir. Görüntü tanıma, dil işleme, ses işleme, otonom sistemler, yüz tanıma ve büyük veri gerektiren görevlerde kullanılır. Örneğin, bir derin öğrenme çözümü, kullanıcı duygularını belirlemek için sosyal medyadaki bahsetmeleri analiz edebilir. Özetle, makine öğrenmesi daha az veri ve işlem gücü ile hızlı çözümler sunarken, derin öğrenme daha büyük veri setleri ve güçlü donanımlar ile daha karmaşık problemleri çözebilir.

    Makine öğrenimi nedir?

    Makine öğrenimi (ML), verilerden öğrenebilen ve görünmeyen verilere genelleyebilen, dolayısıyla açık talimatlar olmadan görevleri yerine getirebilen istatistiksel algoritmaların geliştirilmesi ve incelenmesiyle ilgilenen, yapay zekâda akademik bir disiplindir. Makine öğrenimi, bilgisayarların deneyimlerinden öğrenerek karmaşık görevleri otomatikleştirmeyi sağlayan bir yapay zeka alanıdır. Makine öğreniminin bazı kullanım alanları şunlardır: Öneri sistemleri. Sesli asistanlar. Dolandırıcılık tespiti. Makine öğreniminin dört ana türü vardır: 1. Denetimli öğrenme. 2. Denetlenmeyen öğrenme. 3. Yarı denetimli öğrenme. 4. Pekiştirmeli öğrenme.

    Makine Öğrenmesi için hangi seviye?

    Makine öğrenmesi için gerekli seviye, kişinin hedeflerine ve kariyer yoluna bağlı olarak değişir. İşte bazı yaygın makine öğrenmesi rolleri ve gerekli bilgi seviyeleri: Makine Öğrenimi Mühendisi: ML modelleri tasarlar, geliştirir ve optimize eder. Veri Bilimcisi: Büyük veri setlerini analiz eder ve ML algoritmalarını uygular. Doğal Dil İşleme (NLP) Uzmanı: Sesli asistanlar ve çeviri sistemleri gibi alanlarda çalışır. Bilgisayarlı Görü (Computer Vision) Uzmanı: Otonom araçlar ve yüz tanıma sistemleri gibi teknolojilerle ilgilenir. Makine öğrenmesi öğrenmek için temel programlama (Python veya R), veri yapıları ve algoritmalar, matematik ve istatistik bilgisi gereklidir.

    Makine Öğrenimi zor mu?

    Makine öğrenimi, yeni başlayanlar için zorlayıcı olabilecek karmaşık matematiksel kavramları, programlama becerilerini ve veri bilimi anlayışını birleştirir. Makine öğreniminin zor olmasının bazı nedenleri: Matematiksel karmaşıklık. Gelişmiş programlama becerileri. Veri işleme ve ön işleme. Algoritmik karmaşıklık. Model seçimi ve ayarlama. Hızlı gelişmeler. Teorik ve pratik bilgi. Disiplinlerarası doğa. Problem çözme ve eleştirel düşünme.

    Makine öğrenmesi aşamaları nelerdir?

    Makine öğrenmesi aşamaları genellikle şu adımları içerir: 1. Problem Belirleme: Çözülmesi gereken problemin tanımlanması. 2. Veri Toplama: Yapılandırılmış veya yapılandırılmamış verilerin toplanması. 3. Veri Ön İşleme: Verilerin temizlenmesi, eksik verilerin işlenmesi ve normalizasyon gibi işlemler. 4. Model Seçimi: Problemin türüne uygun bir makine öğrenme modelinin seçilmesi. 5. Eğitim-Doğrulama-Test Verilerinin Ayrılması: Verilerin eğitim, doğrulama ve test setleri olarak ayrılması. 6. Model Eğitimi ve Değerlendirmesi: Eğitim seti kullanılarak modelin eğitilmesi ve test seti ile performansının ölçülmesi. 7. Hiperparametre Ayarlama ve Optimizasyon: Modelin hiperparametrelerinin optimize edilmesi. 8. Tahmin ve Dağıtım: Modelin yeni veriler üzerinde tahmin yapması ve sonuçların dağıtılması. Bu adımlar, kullanılan algoritmaya ve projenin gereksinimlerine göre değişiklik gösterebilir.