• Buradasın

    App Inventor ile makine öğrenmesi yapılabilir mi?

    Yazeka

    Arama sonuçlarına göre oluşturuldu

    Evet, App Inventor ile makine öğrenmesi yapılabilir 1.
    App Inventor, makine öğrenmesi ve yapay zeka (AI) uygulamaları geliştirmek için çeşitli eğitim birimleri ve öğreticiler sunmaktadır 1. Örneğin, platformda "Görüntü Sınıflandırması" ve "GörüntüBot" gibi makine öğrenmesi tabanlı uygulama geliştirme dersleri bulunmaktadır 1. Ayrıca, "Takviye Öğrenme: Köpeği Eğit" gibi ileri düzey AI projeleri de mevcuttur 1.
    App Inventor, sürükle-bırak yöntemiyle kodlama imkanı sunan blok tabanlı bir mobil uygulama geliştirme ortamıdır 35. Bu özelliği sayesinde, programlama konusunda deneyimi olmayan kişiler de makine öğrenmesi uygulamalarını geliştirebilir 3.
    5 kaynaktan alınan bilgiyle göre:

    Konuyla ilgili materyaller

    Makine öğrenmesi aşamaları nelerdir?

    Makine öğrenmesi süreci genellikle aşağıdaki aşamalardan oluşur: 1. Problem Belirleme: Neyi öngörmeniz gerektiğini ve bu tahminleri yapmak için hangi gözlem verilerine sahip olmanız gerektiğini belirlemek. 2. Veri Toplama: Yapılandırılmış veya yapılandırılmamış verileri toplayarak bir veri seti oluşturmak. 3. Veri Hazırlama: Verileri makine öğrenimi için uygun şekilde hazırlamak, veriler arası anlamlı değişkenler oluşturmak. 4. Model Seçimi: Probleminizi en iyi temsil edecek ve verilerinize uygun olan modeli seçmek. 5. Eğitim, Doğrulama ve Test Verilerinin Ayrılması: Verileri, modelin çıktıyı öngörme yeteneğini kademeli olarak geliştirmek için eğitim, doğrulama ve test verisi olarak ayırmak. 6. Modelin Değerlendirilmesi: Modelin eğitim ve doğrulama verileriyle eğitilip, test verisi ile doğrulanması. 7. Parametre Ayarı: Elde edilen sonuçların değerlendirilmesinin ardından sonuçların daha da iyileştirilip iyileştirilemeyeceğine bakmak. 8. Tahmin: Modelin görmediği veriler ile tahmin yapmak.

    Makine öğrenimi nedir?

    Makine öğrenimi, bilgisayarların verilerden öğrenerek belirli görevleri otomatik olarak yerine getirmesine olanak tanıyan bir yapay zeka dalıdır. Bu öğrenme süreci, algoritmalar ve matematiksel modeller aracılığıyla gerçekleştirilir. Makine öğreniminin bazı türleri: - Denetimli öğrenme: Etiketli veri kullanarak model eğitme. - Denetimsiz öğrenme: Etiketlenmemiş veri kullanarak model eğitme. - Pekiştirmeli öğrenme: Bir ajan ve çevre arasındaki etkileşim yoluyla öğrenme. - Derin öğrenme: Çok katmanlı yapay sinir ağlarını kullanarak veriden öğrenme. Kullanım alanları: Finans, sağlık, perakende, medya, eğlence ve finansal hizmetler gibi birçok sektörde yaygın olarak kullanılır.

    App inventorda hangi yapay zeka kullanılır?

    App Inventor'da kullanılan bazı yapay zeka araçları: ChatGPT ve Gemini. DALL-E. Ayrıca, App Inventor, yapay zeka ile ilgili temel kavramlar ve uygulamalar hakkında eğitim vermek için de kullanılmaktadır.

    AppInventor'da makine öğrenmesi için hangi kütüphane kullanılır?

    AppInventor'da makine öğrenmesi için Scikit-learn kütüphanesi kullanılabilir.

    Ai ve makine öğrenmesi aynı şey mi?

    Hayır, yapay zeka (AI) ve makine öğrenmesi (ML) aynı şey değildir; makine öğrenmesi, yapay zekanın bir alt kümesidir. Yapay zeka, bir bilgisayar sisteminin öğrenme ve sorun çözme gibi insana özgü bilişsel işlevleri taklit edebilme becerisidir. Makine öğrenmesi ise, bilgisayar sistemlerinin karmaşık görevleri açık talimatlar olmadan gerçekleştirmek için kullanacağı algoritmalar ve istatistiksel modeller geliştirme bilimidir.

    Makine öğrenmesi ve derin öğrenme hangi durumlarda kullanılır?

    Makine Öğrenmesi ve Derin Öğrenmenin Kullanım Durumları: Makine Öğrenmesi: Yapılandırılmış veri üzerinde çalışan basit problemler için uygundur. Sınıflandırma, tahmin, öneri sistemleri, müşteri segmentasyonu ve spam tespiti gibi alanlarda kullanılır. Örneğin, bir şirket, önceki müşteri kaybı verilerine dayanarak bir müşterinin abonelikten ne zaman çıkacağını tahmin etmek için makine öğrenmesi kullanabilir. Derin Öğrenme: Yapılandırılmamış veriler ve karmaşık problemler için idealdir. Görüntü tanıma, dil işleme, ses işleme, otonom sistemler, yüz tanıma ve büyük veri gerektiren görevlerde kullanılır. Örneğin, bir derin öğrenme çözümü, kullanıcı duygularını belirlemek için sosyal medyadaki bahsetmeleri analiz edebilir. Özetle, makine öğrenmesi daha az veri ve işlem gücü ile hızlı çözümler sunarken, derin öğrenme daha büyük veri setleri ve güçlü donanımlar ile daha karmaşık problemleri çözebilir.

    Makine öğrenmesi için hangi dil?

    Makine öğrenmesi için en yaygın kullanılan programlama dilleri şunlardır: 1. Python: Basit söz dizimi, kapsamlı kütüphaneleri (TensorFlow, PyTorch) ve topluluk desteği ile makine öğrenmesi için idealdir. 2. R: İstatistiksel analiz ve veri görselleştirme konularında uzmanlaşmıştır, veri madenciliği ve yapay zeka projelerinde kullanılır. 3. Java: Platform bağımsızlığı, performans ve geniş kütüphane desteği sunar. 4. C++: Zaman verimliliğinin kritik olduğu durumlarda yüksek performans sağlar. 5. JavaScript: Web tabanlı yapay zeka uygulamaları geliştirmek için kullanılır. Seçim, projenin gereksinimlerine ve geliştiricinin tercihine bağlı olarak yapılmalıdır.