Derin öğrenme (deep learning), makine öğreniminin bir alt kümesidir. Derin öğrenme ve makine öğrenmesi arasındaki temel farklar: Veri miktarı: Makine öğrenmesi küçük veya orta boyuttaki veriler ile çalışırken, derin öğrenme için daha büyük veriler gereklidir. Donanım: Derin öğrenme analizleri yapmak için güçlü bilgisayarlar gerekirken, makine öğrenmesi için düşük veya orta seviyede bilgisayarlar yeterlidir. Öznitelik mühendisliği: Makine öğrenmesinde özelliklerin kullanıcılar tarafından doğru bir şekilde tanımlanması ve oluşturulması gerekir, derin öğrenmede ise verilerden üst düzey özellikler öğrenilir ve yeni özellikler oluşturulur. Eğitim zamanı: Makine öğrenmesi algoritmalarının eğitim süresi kısa (en fazla bir veya iki saat) iken, derin öğrenme algoritmalarının eğitim süresi uzundur (günler veya haftalar). Öğrenme yaklaşımı: Makine öğrenmesi, öğrenme sürecini daha küçük adımlara ayırır ve her bir adımdaki sonuçları tek bir çıkışta birleştirir. Uygulama alanları: Makine öğrenimi, yapılandırılmış ve etiketlenmiş verilerle yürütülen iyi tanımlanmış görevler için idealdir; derin öğrenme ise yapılandırılmamış verileri anlamlandırmayı gerektiren karmaşık görevler için idealdir.