• Buradasın

    Yapay zeka veri etiketleme nedir?

    Yazeka

    Arama sonuçlarına göre oluşturuldu

    Yapay zeka veri etiketleme, bir makine öğrenimi modelinin öğrenebilmesi için ham verilerin (görüntüler, metinler, sesler vb.) tanımlanması ve bu verilere anlamlı etiketler eklenmesi sürecidir 3.
    Bu süreçte:
    1. Manuel Etiketleme: İnsanlar verileri etiketleyerek yapay zekanın öğrenmesi için anlamlı bir veri kümesi oluştururlar 14.
    2. Otomatik Etiketleme: Yapay zeka tabanlı araçlar, öğrendikleri kalıplara göre verileri etiketler 4.
    Veri etiketleme, yapay zekanın doğru kararlar verebilmesi ve gerçek dünyada uygulanabilmesi için kritik öneme sahiptir 13.
    5 kaynaktan alınan bilgiyle göre:

    Konuyla ilgili materyaller

    Resimlerde yapay zeka nasıl kullanılır?

    Resimlerde yapay zeka şu şekillerde kullanılabilir: Fotoğraf düzenleme. Görsel oluşturma. Filigran kaldırma ve görüntü restorasyonu. Çözünürlük artırma. Işık ve atmosfer değiştirme. Yapay zeka ile resim düzenleme ve görsel oluşturma için kullanılabilecek bazı platformlar şunlardır: Canva; Fotor; Microsoft Designer; Adobe Firefly; DALL·E 2; Stable Diffusion; Midjourney.

    Yapay zeka için veri seti nereden alınır?

    Yapay zeka için veri seti alabileceğiniz bazı platformlar: Kaggle. UCI Machine Learning Repository. Data.World. Socrata OpenData. Open Data Europe. TÜBİTAK BİLGEM Yapay Zeka Enstitüsü.

    Yapay zeka nedir ve örnekleri?

    Yapay zeka (YZ), bilgisayar sistemlerinin insan zekasına özgü görevleri yerine getirmesini sağlayan bir bilgisayar bilimi dalıdır. Bazı YZ örnekleri: Sesli asistanlar: Siri, Alexa, Google Asistan. Otonom sürüş sistemleri: Tesla'nın otopilot özelliği. Sosyal medya haber akışları: Facebook, Instagram, Twitter. Müzik ve medya akış hizmetleri: Spotify, Netflix, YouTube. Sağlık sektörü: Hastalıkların erken tespiti ve teşhisi. Kendi kendine öğrenen sistemler: Google'ın AlphaStar ürünü, StarCraft 2 oyununu kendine karşı oynayarak kendini geliştirdi. YZ türleri: Dar YZ: Belirli bir görevi yerine getirmek üzere tasarlanmış ve eğitilmiş YZ. Genel YZ (AGI): Farklı alanlardaki bilgileri anlama, öğrenme ve uygulama yeteneğine sahip YZ. Süper YZ: İnsan zekasını aşan ve her görevi insandan daha iyi yerine getirebilen YZ.

    Yapay zekâ hangi bilgileri tahmin edebilir?

    Yapay zeka (YZ), çeşitli bilgileri tahmin edebilir. İşte bazı örnekler: Hava durumu ve trendler: YZ, hava durumu paternlerini analiz ederek gelecek dönemlerde hava durumunu ve trendleri tahmin edebilir. Satın alma davranışları: YZ, satın alma verilerini analiz ederek hangi ürünlerin popüler olacağını ve makinelerin ne zaman bozulacağını öngörebilir. Trafik ve rotalar: YZ, trafik verilerini analiz ederek en hızlı rotaları belirleyebilir ve yol güvenliğini artırabilir. Sağlık göstergeleri: YZ, sağlık göstergelerini takip ederek beslenme, uyku, egzersiz ve ilaçlar konusunda önerilerde bulunabilir. Finansal riskler: YZ, finansal işlemleri analiz ederek dolandırıcılık ve kara para aklama gibi şüpheli durumları tespit edebilir. YZ, büyük miktarda veriyi hızlı ve doğru bir şekilde işleyerek çeşitli tahminler yapabilir.

    Hangi yapay zeka verileri analiz eder?

    Çeşitli yapay zeka araçları, farklı türdeki verileri analiz edebilir: Julius AI. TensorFlow. IBM Watson. Microsoft Azure Machine Learning. Google AI Platform. RapidMiner. Tableau AI. ChartGPT. Polymer. Code Interpreter.

    Yapay zeka türleri nelerdir?

    Yapay zeka türleri şu şekilde sınıflandırılabilir: Dar (Zayıf) Yapay Zeka: Belirli bir görevi yerine getirmek üzere tasarlanmış ve eğitilmiştir. Genel Yapay Zeka (AGI): İnsan düzeyinde bilişsel yeteneklere sahip olup, farklı alanlardaki bilgileri anlama, öğrenme ve uygulama yeteneğine sahiptir. Süper Yapay Zeka (ASI): İnsan zekasını aşan, kendi kendine öğrenen ve gelişen bir yapay zeka türüdür. Reaktif Makineler: Geçmiş deneyimleri saklamaz, belirli görevleri yerine getirmek için tasarlanmıştır. Sınırlı Hafızalı Makineler: Geçmiş deneyimleri veya verileri kısa bir süreliğine saklayabilir. Zihin Teorisi: İnsanların düşüncelerini, duygularını ve niyetlerini anlama yeteneğine sahiptir. Özbilinçli Yapay Zeka: Kendi bilincine ve farkındalığına sahiptir. Ayrıca, derin öğrenme, makine öğrenimi ve doğal dil işleme gibi yapay zeka alt dalları da bulunmaktadır.

    Yapay zekanın öğrenmesi için ne kadar veri gerekir?

    Yapay zekanın öğrenmesi için büyük miktarda veri gereklidir. Yapay zekanın öğrenme sürecinde veri miktarı kadar, verilerin kalitesi de önemlidir.