• Buradasın

    Yapay zeka hangi altyapıyı kullanıyor?

    Yazeka

    Arama sonuçlarına göre oluşturuldu

    Yapay zeka (YZ) için gerekli bazı altyapı bileşenleri:
    • Hesaplama gücü 23. YZ modelleri için yüksek performanslı bilgi işlem (HPC) yetenekleri, özellikle GPU'lar veya TPU'lar gereklidir 23.
    • Veri depolama 23. Büyük veri kümelerinin saklanması için geniş depolama alanı gereklidir 23.
    • 2. Yüksek bant genişliği ve düşük gecikme süresi, hızlı bilgi transferi için önemlidir 2.
    • Güvenlik 2. Verilerin güvenli bir şekilde işlenmesini ve depolanmasını sağlayan uçtan uca güvenlik çözümleri gereklidir 2.
    • Veri yönetimi ve temizleme 25. Yanlış, yinelenen veya gereksiz verilerin ortadan kaldırılması için araçlar kullanılmalıdır 25.
    Ayrıca, YZ modellerinin dağıtımı için bulut altyapısı kullanılabilir 5. Bu, işletmelerin fiziksel donanıma yatırım yapmadan YZ yeteneklerinden yararlanmalarını sağlar 5.
    5 kaynaktan alınan bilgiyle göre:

    Konuyla ilgili materyaller

    Genel yapay zeka nedir?

    Genel yapay zeka (GYZ), bir insanın yapabileceği herhangi bir zihinsel görevi başarıyla gerçekleştirebilecek bir makinenin zekasıdır. GYZ'nin bazı özellikleri: Çok yönlülük. Öğrenme yeteneği. Geniş yetenek yelpazesi. Günümüzde GYZ teorik bir kavram ve araştırma hedefi olarak kabul edilmektedir.

    Yapay zeka türleri nelerdir?

    Yapay zeka türleri şu şekilde sınıflandırılabilir: Dar (Zayıf) Yapay Zeka: Belirli bir görevi yerine getirmek üzere tasarlanmış ve eğitilmiştir. Genel Yapay Zeka (AGI): İnsan düzeyinde bilişsel yeteneklere sahip olup, farklı alanlardaki bilgileri anlama, öğrenme ve uygulama yeteneğine sahiptir. Süper Yapay Zeka (ASI): İnsan zekasını aşan, kendi kendine öğrenen ve gelişen bir yapay zeka türüdür. Reaktif Makineler: Geçmiş deneyimleri saklamaz, belirli görevleri yerine getirmek için tasarlanmıştır. Sınırlı Hafızalı Makineler: Geçmiş deneyimleri veya verileri kısa bir süreliğine saklayabilir. Zihin Teorisi: İnsanların düşüncelerini, duygularını ve niyetlerini anlama yeteneğine sahiptir. Özbilinçli Yapay Zeka: Kendi bilincine ve farkındalığına sahiptir. Ayrıca, derin öğrenme, makine öğrenimi ve doğal dil işleme gibi yapay zeka alt dalları da bulunmaktadır.

    Yapay zeka için hangi program kullanılır?

    Yapay zeka geliştirmek için kullanılan bazı programlar ve platformlar: Jupyter Notebook. Google Colab. TensorFlow. PyTorch. Scikit-learn. Microsoft Azure ML, AWS SageMaker, Google Vertex AI. Ayrıca, yapay zeka geliştirmek için Anaconda + Jupyter Notebook, RapidMiner ve Kaggle Kernels gibi araçlar da kullanılabilir. Başlangıç ve geliştirme için Python dili, hız ve entegrasyon için ise C++ tercih edilir.

    Yapay zeka nedir ve örnekleri?

    Yapay zeka (YZ), bilgisayar sistemlerinin insan zekasına özgü görevleri yerine getirmesini sağlayan bir bilgisayar bilimi dalıdır. Bazı YZ örnekleri: Sesli asistanlar: Siri, Alexa, Google Asistan. Otonom sürüş sistemleri: Tesla'nın otopilot özelliği. Sosyal medya haber akışları: Facebook, Instagram, Twitter. Müzik ve medya akış hizmetleri: Spotify, Netflix, YouTube. Sağlık sektörü: Hastalıkların erken tespiti ve teşhisi. Kendi kendine öğrenen sistemler: Google'ın AlphaStar ürünü, StarCraft 2 oyununu kendine karşı oynayarak kendini geliştirdi. YZ türleri: Dar YZ: Belirli bir görevi yerine getirmek üzere tasarlanmış ve eğitilmiş YZ. Genel YZ (AGI): Farklı alanlardaki bilgileri anlama, öğrenme ve uygulama yeteneğine sahip YZ. Süper YZ: İnsan zekasını aşan ve her görevi insandan daha iyi yerine getirebilen YZ.

    Yapay zekâ ile neler yapılabilir?

    Yapay zekâ ile yapılabilecek bazı şeyler: İçerik üretimi ve editörlük. Sohbet botu ve sanal asistan. Veri analizi ve raporlama. E-ticaret ve ürün öneri. Dil hizmetleri ve çeviri. Eğitim ve danışmanlık. Yaratıcı projeler ve tasarım. Tıp ve sağlık. Finans. Ulaşım ve lojistik.

    Yapay zeka AI ne işe yarar?

    Yapay zeka (AI), insan zekasını taklit ederek çeşitli görevleri yerine getirmeye yarar. Yapay zekanın bazı kullanım alanları: Önerici sistemler. Makine çevirisi. Sinyal işleme. Regresyon analizi. Görüntü işleme. Kişiselleştirilmiş alışveriş deneyimleri. Sağlık hizmetleri. Tahmin. Otonom araçlar.