LSTM (Long Short-Term Memory) modeli, sıralı verileri işlemek için tasarlanmış özel bir tekrarlayan sinir ağı (RNN) mimarisidir. Temel özellikleri: - Uzun vadeli bağımlılıkları öğrenme: LSTM'ler, dizinin önceki kısımlarındaki bağlamın sonraki kısımları anlamak için önemli olduğu durumlarda etkilidir. - Bellek hücreleri ve kapılar: LSTM, bellek hücresinde depolanan bilgileri düzenlemek için üç ana "kapı" kullanır: unut kapısı, giriş kapısı ve çıkış kapısı. Kullanım alanları: - Doğal dil işleme (NLP): Makine çevirisi, duygu analizi ve dil modelleme gibi görevlerde kullanılır. - Konuşma tanıma: Ses sinyallerindeki zamansal bağımlılıkları modelleyerek kullanılır. - Zaman serisi analizi: Geçmiş verilere dayanarak gelecekteki değerleri tahmin etmek için uygulanır. LSTM modelleri, PyTorch ve TensorFlow gibi popüler derin öğrenme çerçeveleri kullanılarak kolayca uygulanabilir.