Laplace dönüşümünün bazı özellikleri: Doğrusallık: İki fonksiyonun toplamının Laplace dönüşümü, her iki fonksiyonun ayrı ayrı Laplace dönüşümlerinin toplamına eşittir. Türevin dönüşümü: Türevin Laplace dönüşümü, s ile çarpıma dönüşür. İntegralin dönüşümü: İntegralin Laplace dönüşümü, s ile bölmeye dönüşür. Başlangıç değer teoremi: Fonksiyonun t=0 noktasındaki değeri, s ile çarpımın limitiyle bulunabilir. Son değer teoremi: Fonksiyonun t=∞ yatışkın değer limiti, s limitiyle bulunabilir. Zaman değişiminin pozitif olması: Laplace dönüşümleri, zaman değişiminin daima pozitif ve sonsuza kadar olduğu durumlarda uygulanır. Diferansiyel denklemleri cebirsel hale getirme: Laplace dönüşümleri, diferansiyel denklemleri cebirsel denklemler haline getirir ve bu sayede kontrol hesaplamalarında kolaylık sağlar.