• Buradasın

    Çeşitli olaylara ilişkin verinin toplanması özetlenmesi analiz edilmesi ve analiz sonuçlarının yorumlanmasını tümünü kapsayan bir veri bilimi nedir?

    Yazeka

    Arama sonuçlarına göre oluşturuldu

    İstatistik, çeşitli olaylara ilişkin verinin toplanması, özetlenmesi, analiz edilmesi ve analiz sonuçlarının yorumlanmasını kapsayan bir veri bilimidir 1.
    5 kaynaktan alınan bilgiyle göre:

    Konuyla ilgili materyaller

    Derinlemesine araştırmada veri analizi nasıl yapılır?

    Derinlemesine araştırmada veri analizi yapmak için aşağıdaki adımlar izlenir: 1. Veri Toplama: Araştırmanın amacına yönelik verilerin toplanması ve kaydedilmesi. 2. Veri Temizleme ve Düzenleme: Toplanan veriler genellikle eksik, hatalı veya tutarsızdır. 3. Veri Keşfi ve Görselleştirme: Veri setindeki desenleri ve ilişkileri keşfetmek için istatistiksel ve görselleştirme teknikleri kullanılır. 4. Veri Analizi: Keşfedilen desenleri ve ilişkileri daha derinlemesine incelemek için istatistiksel analiz ve veri madenciliği teknikleri kullanılır. 5. Sonuçların Yorumlanması: Veri analizi sonuçları, işletmenin veya araştırmanın amacına yönelik belirli bir soruyu cevaplamak için yorumlanır. 6. Sonuçların Sunumu: Son olarak, veri analizi sonuçları raporlar, sunumlar veya görseller aracılığıyla sunulur.

    Büyük Veri Analizi dersi ne işe yarar?

    Büyük Veri Analizi dersi, öğrencilere büyük ve karmaşık veri setlerinden değerli bilgiler çıkarma becerilerini kazandırır. Bu ders, aşağıdaki alanlarda fayda sağlar: Karar Alma Süreçleri: Veriye dayalı daha doğru ve stratejik kararlar alınmasını mümkün kılar. Müşteri Anlayışı: Tüketici davranışlarını analiz ederek kişiselleştirilmiş ürün ve hizmetler sunmayı sağlar. Rekabet Avantajı: Pazar dinamikleri ve rakip faaliyetleri hakkında derinlemesine bilgi sağlayarak rekabet gücünü artırır. Operasyonel Verimlilik: İş süreçlerini optimize ederek kaynak israfını azaltır. Yenilikçi Gelişmeler: Müşteri geri bildirimleri ve pazar analizlerine dayalı olarak yeni ürün ve hizmetlerin geliştirilmesini mümkün kılar. Bu ders, finans, sağlık, perakende, teknoloji ve kamu gibi çeşitli sektörlerde kariyer fırsatları sunar.

    Büyük veri analizine giriş dersinde neler işlenir?

    Büyük veri analizine giriş dersinde genellikle aşağıdaki konular işlenir: 1. İlişkisel Veri Tabanları ve E-R Diagramları: Veri saklama ve sorgulama teknolojileri. 2. SQL Dili: Temel seviyede SQL eğitimi. 3. Büyük Veri Kavramları: Büyük verinin özellikleri (5V), yapılandırılmış, yapılandırılmamış ve yarı yapılandırılmış veri türleri. 4. Depolama ve Analiz: Hadoop, HDFS, MapReduce gibi büyük veri işleme konseptleri. 5. Büyük Veri Analizi Teknikleri: Nicel ve nitel veri madenciliği, istatistiksel analiz, makine öğrenimi ve anlamsal analiz. 6. Görselleştirme: Büyük veri kümelerinin görselleştirilmesi. Bu dersler, öğrencilere büyük verilerin toplanması, temizlenmesi, depolanması ve analiz edilmesi süreçlerini anlamalarını sağlar.

    Nitel veri analizi yöntemleri nelerdir?

    Nitel veri analizi yöntemleri şunlardır: 1. Gözlem: Bir olgu, durum veya olay için detaylı gözlemleme yöntemi. 2. Etnometodoloji: Toplumsal düzenin üretimindeki rollerini tespit etmek için günlük hayattaki olayların incelenmesi. 3. Örnek olay çalışması: Gerçekliğin bir örnek üzerinden elde edilmeye çalışılması. 4. İçerik ve söylem analizi: Görsel, sesli, doküman gibi verilerin incelenmesi. 5. Fenomenoloji: Birey perspektifli olarak olay ve olguların betimleyici bir tutumla incelenmesi. 6. Weberyan yöntem: Bir olgunun birden fazla gerçekliğin sonucu olabileceği göz önünde bulundurularak değerlendirilmesi. Diğer yöntemler arasında tematik analiz, anlatı analizi ve üçgenleme de yer alır.

    Kategorik veri analizi nasıl yapılır?

    Kategorik veri analizi yapmak için aşağıdaki adımlar izlenir: 1. Amaçların Belirlenmesi: Analizin neden yapıldığı ve hangi soruların cevaplanması gerektiği belirlenir. 2. Veri Toplama: Anketler, araştırma sonuçları, hastane kayıtları, arama geçmişleri gibi çeşitli kaynaklardan veriler toplanır. 3. Verilerin Düzenlenmesi: Toplanan veriler organize edilir, kayıt tutulur ve analiz edilmek üzere uygun hale getirilir. 4. Veri Temizleme: Tekrarlanan kayıtlar, hatalı kısımlar ve konuyla alakasız bilgiler ayıklanır. 5. İstatistiksel Analiz: Verilerin toplanması, analizi, yorumlanması ve modellenmesi yapılır. 6. Görselleştirme: Analiz sonuçları, çizelgeler, grafikler ve haritalar gibi görsel modellerle sunulur. Bu süreçte veri madenciliği, metin analizleri, makine öğrenmesi gibi teknikler de kullanılabilir.

    Nicel veri analizinde hangi testler yapılır?

    Nicel veri analizinde yapılan bazı testler şunlardır: 1. t-testi: İki grubun ortalamaları arasında anlamlı bir fark olup olmadığını sınamak için kullanılır. 2. Ki-kare testi: İki nitel değişkenin kategorileri arasındaki ilişkiyi incelemek için kullanılır. 3. Z-testi: Büyük örneklemlerde ortalamaların karşılaştırılması için kullanılır. 4. U-testi (Mann Whitney U testi): Sıralı veriler için gruplar arası farklılıkları test eder. 5. Tek yönlü varyans analizi (ANOVA): İkiden fazla grubun ortalamalarını karşılaştırmak için kullanılır. 6. Korelasyon analizi: İki veya daha fazla değişken arasındaki ilişkiyi incelemek için kullanılır. 7. Regresyon analizi: Bir değişkenin diğer değişkenler üzerindeki etkisini matematiksel olarak göstermek için kullanılır.

    Nitel veri analizi için hangi program kullanılır?

    Nitel veri analizi için aşağıdaki programlar kullanılabilir: 1. NVivo: Metin, görüntü ve ses gibi çeşitli veri türlerini analiz etmek için tasarlanmış bir nitel veri analizi platformudur. 2. ATLAS.ti: Birçok dosyayı destekleyen, resim, ses, görüntü ve yazı gibi verileri kodlayarak analiz eden bir yazılımdır. 3. MAXQDA: Güçlü yapısı ve geniş dosya desteği ile sıkça tercih edilen bir diğer nitel analiz yazılım aracıdır. Ayrıca, QDA Miner ve Dedoose gibi ücretsiz ve açık kaynaklı nitel veri analizi yazılımları da mevcuttur.