Koşulsuz olasılık, bir olayın gerçekleşme olasılığını ifade eder ve genellikle P(A) şeklinde gösterilir. Koşullu olasılık ise, bir olayın gerçekleşme olasılığı, başka bir olayın gerçekleştiği bilindiğinde hesaplanır ve P(A|B) şeklinde gösterilir. Koşullu olasılık hesaplama formülü: P(A|B) = P(A ∩ B) / P(B). Bu formülde: P(A ∩ B), A ve B olaylarının kesişimini, yani her iki olayın da gerçekleşme olasılığını temsil eder. P(B), B olayının gerçekleşme olasılığını ifade eder. Örnek: Bir çantada 4 beyaz, 6 siyah ve 8 kırmızı top varsa, bir beyaz veya siyah top çekme olasılığı şu şekilde hesaplanır: P(Beyaz veya Siyah) = P(Beyaz) + P(Siyah) - P(Beyaz ∩ Siyah) P(Beyaz) = 4/18, P(Siyah) = 6/18, P(Beyaz ∩ Siyah) = 0 (çünkü beyaz ve siyah toplar birbirini tamamlayan olaylardır) P(Beyaz veya Siyah) = 4/18 + 6/18 - 0 = 10/18 = 5/9. Koşullu olasılık ve olasılık hesaplama konularında daha fazla bilgi için aşağıdaki kaynaklar kullanılabilir: Khan Academy'de "Koşullu Olasılığı Hesaplayalım" başlıklı video. YouTube'da "Olasılık ve İstatistik: Koşullu Olasılık (Conditional Probability)" başlıklı video. derspresso.com.tr sitesinde "Koşullu Olasılık" başlıklı konu anlatımı. siirt.edu.tr sitesinde "Olasılık ve İstatistik" başlıklı doküman. avys.omu.edu.tr sitesinde "Olayların Bağımsızlığı ve Koşullu Olasılık" başlıklı doküman.