Leibniz integral kuralı, integral işareti altında türev alma olarak da bilinir. Leibniz integral kuralının genel formu şu şekildedir: d/dt ∬ Σ(t) F(r, t) · dA = ∬ Σ(t) (F_t(r, t) + [∇ · F(r, t)] v) · dA - ∮ ∂Σ(t) [v × F(r, t)] · ds. Ayrıca, iki boyutlu bir yüzeyin üç boyutlu uzayda hareket etmesi için bir Leibniz integral kuralı da vardır: d/dx (∫ a x f(x, t) dt) = f(x, x) + ∫ a x ∂/∂x f(x, t) dt. Leibniz integral kuralı, belirli koşullar altında integral ve kısmi diferansiyel operatörlerinin değişiminde kullanılabilir ve özellikle integral dönüşümlerinin diferansiyasyonunda faydalıdır.