PCA (Principal Component Analysis), kümeleme (clustering) için kullanılır çünkü: 1. Boyut Azaltma: PCA, yüksek boyutlu verileri daha düşük boyutlu bir uzaya taşıyarak kümeleme algoritmalarının daha kolay çalışmasını sağlar. 2. Gürültü Azaltma: PCA, veri içindeki gürültüyü filtreleyerek, kümelerin daha net ve anlamlı olmasını sağlar. 3. Korelasyon Giderme: PCA, özellikler arasındaki korelasyonu ortadan kaldırarak, kümelerin daha iyi ayrılmasını ve yorumlanmasını kolaylaştırır. 4. Görselleştirme: Yüksek boyutlu verilerin iki veya üç boyutlu olarak görselleştirilmesini mümkün kılar, bu da kümeleme yapısının daha iyi anlaşılmasını sağlar.