• Buradasın

    Lineer regresyon görselleştirme nasıl yapılır?

    Yazeka

    Arama sonuçlarına göre oluşturuldu

    Lineer regresyon görselleştirme için aşağıdaki adımlar izlenebilir:
    1. Veri Seti Yükleme ve İnceleme: Pandas kütüphanesi kullanılarak veri seti yüklenir ve
      info()
      ve
      describe()
      fonksiyonları ile genel bir inceleme yapılır 1.
    2. Veri Görselleştirme: Seaborn kütüphanesinin
      pairplot
      ve
      heatmap
      fonksiyonları, veriler arasındaki korelasyonu görselleştirmek için kullanılır 1.
    3. Model Oluşturma ve Eğitim: Sklearn kütüphanesinin
      LinearRegression
      metodu ile model oluşturulur ve
      fit
      fonksiyonu ile veriler modele eğitilir 14.
    4. Tahmin ve Görselleştirme:
      predict
      fonksiyonu ile yeni veriler için tahminler yapılır ve bu tahminler, orijinal veri seti ile birlikte doğrusal fit edilmiş çizgi olarak görselleştirilir 14.
    5. Metric Değerleri:
      mean_absolute_error
      ve
      mean_squared_error
      gibi istatistiksel metrikler kullanılarak modelin performansı değerlendirilir 1.
    5 kaynaktan alınan bilgiyle göre:

    Konuyla ilgili materyaller

    Lineer regresyon analizi nedir?

    Lineer regresyon analizi, bir veya daha fazla açıklayıcı değişkenin (bağımsız değişken) bilinen değerlerine dayanarak bilinmeyen bir değişkenin (bağımlı değişken) değerini tahmin etmeye çalışan bir veri analizi tekniğidir. Temel özellikleri: - Doğrusal ilişki: Bağımlı ve bağımsız değişkenler arasında doğrusal bir ilişki varsayılır. - Matematiksel model: Değişkenler, doğrusal bir denklemle matematiksel olarak modellenir. - Kullanım alanları: Bilim insanları ve işletmeler tarafından veri ön analizi yapmak, gelecekteki trendleri tahmin etmek ve iş zekâsına dönüştürmek için kullanılır. İki ana türü: 1. Basit doğrusal regresyon: Tek bir bağımsız değişkenin tek bir bağımlı değişkeni etkilediği durum. 2. Çoklu doğrusal regresyon: Birden fazla bağımsız değişkenin bir bağımlı değişkeni etkilediği durum.

    Lineer yaklaşım nasıl yapılır?

    Lineer yaklaşım, ders içeriğinin birbirini takip eden ve bağlantılı konulardan oluşması anlamına gelir. Bu yaklaşım şu adımlarla yapılır: 1. Ön koşul şartı: Konular, bir öncekinin tamamlanması üzerine inşa edilir. 2. Aşamalı sıra: Dersler, belirli bir sırayla işlenir. 3. Matematiksel modelleme: Lineer programlama gibi matematiksel yöntemler kullanılarak, optimizasyon problemleri çözülür. Lineer yaklaşım, özellikle tarih gibi disiplinlerde ve üretim planlaması gibi endüstriyel alanlarda yaygın olarak kullanılır.

    Lineer ilişki ne demek?

    Lineer ilişki, iki değişken arasındaki doğrusal bir ilişkiyi ifade eder. Matematiksel olarak lineer ilişki, bir doğru denklemi ile temsil edilir ve genellikle y = mx + b formülü ile gösterilir.

    Lineer ve çoklu regresyon arasındaki fark nedir?

    Lineer regresyon ve çoklu regresyon arasındaki temel fark, bağımsız değişkenlerin sayısıdır. - Lineer regresyon, sadece bir bağımsız değişken ile bir bağımlı değişken arasındaki doğrusal ilişkiyi inceler. - Çoklu regresyon, birden fazla bağımsız değişkenin bir bağımlı değişken üzerindeki etkisini analiz eder.

    Lojistik ve doğrusal regresyon arasındaki fark nedir?

    Lojistik ve doğrusal regresyon arasındaki temel farklar şunlardır: 1. Tahmin Edilen Sonuç Türü: - Doğrusal regresyon, sayısal bir değer gibi sürekli sonuçları modellemek için kullanılır. - Lojistik regresyon, bir olayın meydana gelme olasılığı veya iki kategoriden birine sınıflandırma gibi ikili sonuçları modellemek için kullanılır. 2. Çıktı Değerleri: - Doğrusal regresyon çıktıları, veri aralığında herhangi bir değeri alabilen sürekli değerlerdir. - Lojistik regresyon çıktıları, 0 ile 1 arasında değişen olasılıklardır. 3. Model Formu: - Doğrusal regresyon modelleri, bağımlı değişkenler arasındaki ilişkiyi tanımlayan doğrusal bir denkleme dayalıdır. - Lojistik regresyon modelleri, lojistik fonksiyona dayalıdır ve bu fonksiyon, tahmin edilen olasılığı sigmoid eğri olarak bilinen bir değere eşler.

    Excelde regresyon nasıl yapılır?

    Excel'de regresyon analizi yapmak için aşağıdaki adımları izlemek gerekmektedir: 1. Verileri Düzenleme: Bağımlı ve bağımsız değişkenleri ayrı sütunlara yerleştirerek verileri bir tablo halinde düzenleyin. 2. Veri Çözümleme Araçlarını Etkinleştirme: Excel'in üst menüsünde "Dosya" > "Seçenekler" > "Eklentiler" yolunu izleyerek "Excel Eklentileri" bölümünden "Veri Çözümleme" seçeneğini aktif hale getirin. 3. Regresyon Analizini Gerçekleştirme: "Veri" sekmesinde "Veri Çözümleme" seçeneğine tıklayın ve açılan listeden "Regresyon"u seçin. 4. Giriş Aralıklarını Belirleme: "Y Girişi" alanına bağımlı değişkeni, "X Girişi" alanına ise bağımsız değişkenleri girin. 5. Çıktı Konumunu Belirleme: Sonuçları yeni bir çalışma sayfasına veya mevcut bir sayfaya yerleştirmek için "Çıktı Aralığı" alanını seçin. 6. Sonuçları Yorumlama: Excel, analiz sonuçlarını R-kare değeri, katsayılar ve ANOVA tablosu gibi istatistiksel özetler eşliğinde verecektir. Regresyon analizi ile ilgili daha detaylı bilgi ve ileri düzey teknikler için Excel'in resmi kaynaklarına ve uzmanlara başvurulması önerilir.

    Basit doğrusal regresyon analizi nedir örnek?

    Basit doğrusal regresyon analizi, tek bir bağımsız değişken (tahmin edici) ile bağımlı değişken arasındaki ilişkiyi modellemek için kullanılan istatistiksel bir yöntemdir. Örnekler: 1. Mağaza Fiyatları: Belirli bir mağaza fiyatının (bağımlı değişken) bağımsız değişken olan bina alanına göre nasıl değiştiğini analiz etmek. 2. Reklam Harcamaları ve Satışlar: Bir e-ticaret şirketinin, haftalık reklam harcamaları ile haftalık satış miktarı arasındaki ilişkiyi incelemesi. 3. Egzersiz ve Vücut Kitle İndeksi (VKİ): Bir sağlık araştırmacısının, günlük egzersiz süresi ile VKİ arasındaki ilişkiyi incelemesi.