Leibniz, integral ve diferansiyel (türev) kalkülüsü aynı anda, ancak farklı yöntemler kullanarak bulmuştur. Leibniz'in integral ve türev bulma sürecine dair bazı adımlar: Eğrinin altındaki alanı hesaplama: 11 Kasım 1675'te, y=f(x) grafiğinin altındaki alanı integral kalkülüsü kullanarak hesaplamaya çalışmıştır. Sembollerin geliştirilmesi: Günümüzde de kullanılan bazı sembolleri tanıtmıştır; örneğin, integral sembolü (∫) ve diferansiyel için kullanılan d sembolü. Acta Eruditorum'da yayın: 1684'te, integral ve diferansiyel kalkülüsü açıklayan Acta Eruditorum adlı kitabını yayımlamıştır. Leibniz'in türev yöntemi, daha kısa ve matematikçiler için anlaşılması daha kolaydır; kullandığı semboller günümüzde de geçerliliğini korumaktadır. Leibniz ve Newton, kalkülüsü birbirlerinden bağımsız olarak bulmuşlardır.