• Gündem
  • Alışveriş
  • Finans
  • YaCevap
  • Seyahat
  • Video
  • Görsel
  • Ana Sayfa
  • Teknoloji
  • Psikoloji ve İlişkiler
  • Bilim ve Eğitim
  • Yemek
  • Kültür ve Sanat
  • Filmler ve Diziler
  • Ekonomi ve Finans
  • Oyun
  • Spor
  • Güzellik ve Moda
  • Faydalı İpuçları
  • Otomobil
  • Hukuk
  • Seyahat
  • Hayvanlar ve doğa
  • Sağlık
  • Diğer
  • Buradasın
    • Cevap ›
    • Bilim ve Eğitim ›

    Türevde sinüs ve kosinüs kuralı nedir?

    • #Matematik
    • #Türev
    • #Trigonometri
    • #Sinüs

    Yazeka

    Arama sonuçlarına göre oluşturuldu

    Türevde sinüs ve kosinüs kuralları şu şekildedir:
    1. sin(x) fonksiyonunun türevi: cos(x) 25.
    2. cos(x) fonksiyonunun türevi: -sin(x) 25.
    5 kaynaktan alınan bilgiyle göre:

      Yanıtı değerlendir

      5 kaynak

      1. bikifi.com
        1
      2. tr.khanacademy.org
        2
      3. evrimagaci.org
        3
      4. bilimgenc.tubitak.gov.tr
        4
      5. trigonometri.gen.tr
        5
    • Trigonometrik türevler hangi alanlarda kullanılır?

    • Sinüs ve kosinüsün türevleri neden önemlidir?

    • Türevde trigonometrik fonksiyonların diğer kuralları nelerdir?

    • Daha fazla bilgi

    Konuyla ilgili materyaller

    Cos ve sinüs aynı şey mi?

    Sinüs ve kosinüs farklı trigonometrik fonksiyonlardır. Sinüs (sin), bir açının karşısındaki dik kenarın hipotenüse oranıdır. Kosinüs (cos) ise bir açının yanındaki kenarın hipotenüse oranıdır.
    • #Matematik
    • #Trigonometri
    • #Sinüs
    5 kaynak

    Sinüs ve kosinüs arasındaki dönüşüm formülü nedir?

    Sinüs ve kosinüs arasındaki dönüşüm formülü şu şekildedir: sin(θ) = cos(90° - θ).
    • #Matematik
    • #Trigonometri
    • #Formüller
    5 kaynak

    Sinüs ve kosinüs cetveli nasıl okunur?

    Sinüs ve kosinüs cetvelini okumak için aşağıdaki adımları izlemek gerekir: 1. Açının Belirlenmesi: İlk olarak, cetvelin kullanılacağı açının belirlenmesi gereklidir. 2. Trigonometrik Değerlerin Bulunması: Cetvelin üzerinde, belirlenen açının karşısındaki sinüs, kosinüs ve tanjant değerleri okunur. 3. Hesaplamaların Yapılması: Okunan trigonometrik değerler, gerekli hesaplamalarda kullanılmak üzere formüllere yerleştirilir.
    • #Matematik
    • #Trigonometri
    • #Hesaplama
    5 kaynak

    Sinüs ve cosinüs periyodu nasıl bulunur?

    Sinüs ve kosinüs fonksiyonlarının periyodu 2π'dir.
    • #Matematik
    • #Trigonometri
    • #Fonksiyonlar
    • #Periyot
    5 kaynak

    Sinüs ve kosinüs denklemi nasıl çözülür?

    Sinüs ve kosinüs denklemleri çeşitli yöntemlerle çözülebilir: 1. Grafik Yöntemi: Fonksiyonların grafiklerini çizerek kesişim noktalarını bulmak, çözümleri görsel olarak belirlemenin etkili bir yoludur. 2. İnvers Trigonometrik Fonksiyonlar: sin^-1(a) veya cos^-1(b) kullanılarak çözüm bulunabilir. 3. Trigonometrik Özdeşlikler: sin^2(x) + cos^2(x) = 1 gibi özdeşlikler kullanılarak denklemler daha basit bir forma dönüştürülebilir. Örnek bir sinüs denklemi çözümü: sin(x) = 0.5 denklemi için: 1. x = 30° + k360° ve x = 150° + k360° (k, herhangi bir tam sayı) çözümleri elde edilir.
    • #Matematik
    • #Trigonometri
    • #Denklemler
    • #ÇözümYöntemleri
    5 kaynak

    Birim çembere göre sinüs ve kosinüs nasıl tanımlanır?

    Birim çembere göre sinüs ve kosinüs fonksiyonları şu şekilde tanımlanır: - Sinüs (sin): Bir açının sinüsü, birim çember üzerinde o açıyla oluşturulan noktanın y koordinatına eşittir. - Kosinüs (cos): Bir açının kosinüsü, birim çember üzerinde o açıyla oluşturulan noktanın x koordinatına eşittir.
    • #Matematik
    • #Trigonometri
    • #Sinüs
    5 kaynak

    Hangi bölgelerde sinüs ve kosinüs pozitiftir?

    Sinüs ve kosinüsün pozitif olduğu bölgeler trigonometride şu şekildedir: 1. Birinci Bölge: 0° - 90° arası, hem sinüs hem de kosinüs pozitiftir. 2. Dördüncü Bölge: 270° - 360° arası, sadece kosinüs pozitiftir.
    • #Matematik
    • #Trigonometri
    • #Sinüs
    5 kaynak
  • Yazeka nedir?
Seçili sitelerdeki metinlere göre Yazeka tarafından oluşturulan yanıtlardır. Hatalar içerebilir. Önemli bilgileri kontrol ediniz.
  • © 2025 Yandex
  • Gizlilik politikası
  • Kullanıcı sözleşmesi
  • Hata bildir
  • Şirket hakkında
{"g6z10":{"state":{"logoProps":{"url":"https://yandex.com.tr"},"formProps":{"action":"https://yandex.com.tr/search","searchLabel":"Bul"},"services":{"activeItemId":"answers","items":[{"url":"https://yandex.com.tr/gundem","title":"Gündem","id":"agenda"},{"url":"https://yandex.com.tr/shopping","title":"Alışveriş","id":"shopping"},{"url":"https://yandex.com.tr/finance","title":"Finans","id":"finance"},{"url":"https://yandex.com.tr/yacevap","title":"YaCevap","id":"answers"},{"url":"https://yandex.com.tr/travel","title":"Seyahat","id":"travel"},{"url":"https://yandex.com.tr/video/search?text=popüler+videolar","title":"Video","id":"video"},{"url":"https://yandex.com.tr/gorsel","title":"Görsel","id":"images"}]},"userProps":{"loggedIn":false,"ariaLabel":"Menü","plus":false,"birthdayHat":false,"child":false,"isBirthdayUserId":true,"className":"PortalHeader-User"},"userIdProps":{"flag":"skin","lang":"tr","host":"yandex.com.tr","project":"neurolib","queryParams":{"utm_source":"portal-neurolib"},"retpath":"https%3A%2F%2Fyandex.com.tr%2Fyacevap%2Fc%2Fbilim-ve-egitim%2Fq%2Fturevde-sinus-ve-kosinus-kurali-nedir-1402577692%3Flr%3D213%26ncrnd%3D43403","tld":"com.tr"},"suggestProps":{"selectors":{"form":".HeaderForm","input":".HeaderForm-Input","submit":".HeaderForm-Submit","clear":".HeaderForm-Clear","layout":".HeaderForm-InputWrapper"},"suggestUrl":"https://yandex.com.tr/suggest/suggest-ya.cgi?show_experiment=222&show_experiment=224","deleteUrl":"https://yandex.com.tr/suggest-delete-text?srv=web&text_to_delete=","suggestPlaceholder":"Yapay zeka ile bul","platform":"desktop","hideKeyboardOnScroll":false,"additionalFormClasses":["mini-suggest_theme_tile","mini-suggest_overlay_tile","mini-suggest_expanding_yes","mini-suggest_prevent-empty_yes","mini-suggest_type-icon_yes","mini-suggest_personal_yes","mini-suggest_type-icon_yes","mini-suggest_rich_yes","mini-suggest_overlay_dark","mini-suggest_large_yes","mini-suggest_copy-fact_yes","mini-suggest_clipboard_yes","mini-suggest_turboapp_yes","mini-suggest_expanding_yes","mini-suggest_affix_yes","mini-suggest_carousel_yes","mini-suggest_traffic_yes","mini-suggest_re-request_yes","mini-suggest_source_yes","mini-suggest_favicon_yes","mini-suggest_more","mini-suggest_long-fact_yes","mini-suggest_hide-keyboard_yes","mini-suggest_clear-on-submit_yes","mini-suggest_focus-on-change_yes","mini-suggest_short-fact_yes","mini-suggest_app_yes","mini-suggest_grouping_yes","mini-suggest_entity-suggest_yes","mini-suggest_redesigned-navs_yes","mini-suggest_title-multiline_yes","mini-suggest_type-icon-wrapped_yes","mini-suggest_fulltext-highlight_yes","mini-suggest_fulltext-insert_yes","mini-suggest_lines_multi"],"counter":{"service":"neurolib_com_tr_desktop","url":"//yandex.ru/clck/jclck","timeout":300,"params":{"dtype":"stred","pid":"0","cid":"2873"}},"noSubmit":false,"formAction":"https://yandex.com.tr/search","tld":"com.tr","suggestParams":{"srv":"serp_com_tr_desktop","wiz":"TrWth","yu":"7597406871753349707","lr":213,"uil":"tr","fact":1,"v":4,"use_verified":1,"safeclick":1,"skip_clickdaemon_host":1,"rich_nav":1,"verified_nav":1,"rich_phone":1,"use_favicon":1,"nav_favicon":1,"mt_wizard":1,"history":1,"nav_text":1,"maybe_ads":1,"icon":1,"hl":1,"n":10,"portal":1,"platform":"desktop","mob":0,"extend_fw":1,"suggest_entity_desktop":"1","entity_enrichment":"1","entity_max_count":"5"},"disableWebSuggest":false},"context":{"query":"","reqid":"1753349710872135-9898956048909175528-balancer-l7leveler-kubr-yp-vla-171-BAL","lr":"213","aliceDeeplink":"{\"text\":\"\"}"},"baobab":{"parentNode":{"context":{"genInfo":{"prefix":"g6z1w01-0-1"},"ui":"desktop","service":"neurolib","fast":{"name":"neuro_library","subtype":"header"}}}}},"type":"neuro_library","subtype":"header"},"g6z11":{"state":{"links":[{"id":"main","url":"/yacevap","title":"Ana Sayfa","target":"_self"},{"id":"technologies","url":"/yacevap/c/teknoloji","title":"Teknoloji","target":"_self"},{"id":"psychology-and-relationships","url":"/yacevap/c/psikoloji-ve-iliskiler","title":"Psikoloji ve İlişkiler","target":"_self"},{"id":"science-and-education","url":"/yacevap/c/bilim-ve-egitim","title":"Bilim ve Eğitim","target":"_self"},{"id":"food","url":"/yacevap/c/yemek","title":"Yemek","target":"_self"},{"id":"culture-and-art","url":"/yacevap/c/kultur-ve-sanat","title":"Kültür ve Sanat","target":"_self"},{"id":"tv-and-films","url":"/yacevap/c/filmler-ve-diziler","title":"Filmler ve Diziler","target":"_self"},{"id":"economics-and-finance","url":"/yacevap/c/ekonomi-ve-finans","title":"Ekonomi ve Finans","target":"_self"},{"id":"games","url":"/yacevap/c/oyun","title":"Oyun","target":"_self"},{"id":"sport","url":"/yacevap/c/spor","title":"Spor","target":"_self"},{"id":"beauty-and-style","url":"/yacevap/c/guzellik-ve-moda","title":"Güzellik ve Moda","target":"_self"},{"id":"useful-tips","url":"/yacevap/c/faydali-ipuclari","title":"Faydalı İpuçları","target":"_self"},{"id":"auto","url":"/yacevap/c/otomobil","title":"Otomobil","target":"_self"},{"id":"law","url":"/yacevap/c/hukuk","title":"Hukuk","target":"_self"},{"id":"travel","url":"/yacevap/c/seyahat","title":"Seyahat","target":"_self"},{"id":"animals-and-nature","url":"/yacevap/c/hayvanlar-ve-doga","title":"Hayvanlar ve doğa","target":"_self"},{"id":"health","url":"/yacevap/c/saglik","title":"Sağlık","target":"_self"},{"id":"other","url":"/yacevap/c/diger","title":"Diğer","target":"_self"}],"activeLinkId":"science-and-education","title":"Kategoriler","baobab":{"parentNode":{"context":{"genInfo":{"prefix":"g6z1w02-0-1"},"ui":"desktop","service":"neurolib","fast":{"name":"neuro_library","subtype":"header-categories"}}}}},"type":"neuro_library","subtype":"header-categories"},"g6z12":{"state":{"tld":"com.tr","markdown":"**Türevde sinüs ve kosinüs kuralları** şu şekildedir:\n\n1. **sin(x) fonksiyonunun türevi**: **cos(x)** [```2```](https://tr.khanacademy.org/math/calculus-home/taking-derivatives-calc/sine-and-cosine-derivatives-calc/v/derivatives-of-sin-x-cos-x-tan-x-e-x-and-ln-x)[```5```](https://www.trigonometri.gen.tr/trigonometrik-turev-kurallari-nelerdir-ve-nasil-uygulanir.html).\n2. **cos(x) fonksiyonunun türevi**: **-sin(x)** [```2```](https://tr.khanacademy.org/math/calculus-home/taking-derivatives-calc/sine-and-cosine-derivatives-calc/v/derivatives-of-sin-x-cos-x-tan-x-e-x-and-ln-x)[```5```](https://www.trigonometri.gen.tr/trigonometrik-turev-kurallari-nelerdir-ve-nasil-uygulanir.html).","sources":[{"sourceId":1,"url":"https://bikifi.com/biki/trigonometrik-fonksiyonlar/","title":"Trigonometrik Fonksiyonlar - Bikifi","shownUrl":"https://bikifi.com/biki/trigonometrik-fonksiyonlar/"},{"sourceId":2,"url":"https://tr.khanacademy.org/math/calculus-home/taking-derivatives-calc/sine-and-cosine-derivatives-calc/v/derivatives-of-sin-x-cos-x-tan-x-e-x-and-ln-x","title":"Sin X, Cos X, Tan X, E^X ve Ln X'in Türevleri (Video)","shownUrl":"https://tr.khanacademy.org/math/calculus-home/taking-derivatives-calc/sine-and-cosine-derivatives-calc/v/derivatives-of-sin-x-cos-x-tan-x-e-x-and-ln-x"},{"sourceId":3,"url":"https://evrimagaci.org/soru/sinus-kosinus-tanjant-ve-kotanjant-nedir-47999","title":"Sinüs, Kosinüs, Tanjant ve Kotanjant Nedir? - Evrim Ağacı","shownUrl":"https://evrimagaci.org/soru/sinus-kosinus-tanjant-ve-kotanjant-nedir-47999"},{"sourceId":4,"url":"https://bilimgenc.tubitak.gov.tr/makale/trigonometri-sinus-kosinus-ve-tanjant-nedir","title":"Trigonometri: Sinüs, Kosinüs ve Tanjant Nedir? | TÜBİTAK...","shownUrl":"https://bilimgenc.tubitak.gov.tr/makale/trigonometri-sinus-kosinus-ve-tanjant-nedir"},{"sourceId":5,"url":"https://www.trigonometri.gen.tr/trigonometrik-turev-kurallari-nelerdir-ve-nasil-uygulanir.html","title":"Trigonometrik Türev Kuralları Nelerdir ve Nasıl Uygulanır?","shownUrl":"https://www.trigonometri.gen.tr/trigonometrik-turev-kurallari-nelerdir-ve-nasil-uygulanir.html"}],"isHermione":false,"headerProps":{"header":"Türevde sinüs ve kosinüs kuralı nedir?","homeUrl":"/yacevap","categoryUrl":"/yacevap/c/bilim-ve-egitim","categoryTitle":"Bilim ve Eğitim","canUseNativeShare":false,"extralinksItems":[{"variant":"reportFeedback","reportFeedback":{"feature":"YazekaAnswers","title":"Bu yanıtta yanlış olan ne?","checkBoxLabels":[{"value":"Uygunsuz veya aşağılayıcı yanıt"},{"value":"Soruma yanıt verilmedi"},{"value":"Bilgi hataları var"},{"value":"Bilgi yetersiz"},{"value":"Bilgi güncel değil"},{"value":"Görüntüleme hataları"},{"value":"Yanıtta kullanılan kaynaklar güvenilir değil"},{"value":"Bu soru için yanıt gerekmiyor"},{"value":"Diğer"}]}}],"tags":[{"href":"/yacevap/t/matematik","text":"#Matematik"},{"href":"/yacevap/t/turev","text":"#Türev"},{"href":"/yacevap/t/trigonometri","text":"#Trigonometri"},{"href":"/yacevap/t/sinus","text":"#Sinüs"}]},"suggestProps":{"suggestItems":[{"id":0,"text":"Trigonometrik türevler hangi alanlarda kullanılır?","url":"/search?text=Trigonometrik+t%C3%BCrevlerin+kullan%C4%B1m+alanlar%C4%B1&promo=force_neuro"},{"id":1,"text":"Sinüs ve kosinüsün türevleri neden önemlidir?","url":"/search?text=Sin%C3%BCs+ve+kosin%C3%BCs%C3%BCn+t%C3%BCrevlerinin+%C3%B6nemi&promo=force_neuro"},{"id":2,"text":"Türevde trigonometrik fonksiyonların diğer kuralları nelerdir?","url":"/search?text=T%C3%BCrevde+trigonometrik+fonksiyonlar%C4%B1n+kurallar%C4%B1&promo=force_neuro"},{"id":-1,"url":"/search?text=T%C3%BCrevde+sin%C3%BCs+ve+kosin%C3%BCs+kural%C4%B1+nedir%3F&promo=force_neuro","text":"Daha fazla bilgi"}]},"feedbackProps":{"feature":"YazekaAnswers","baseProps":{"metaFields":{"yandexuid":"7597406871753349707","reqid":"1753349710872135-9898956048909175528-balancer-l7leveler-kubr-yp-vla-171-BAL"}},"positiveCheckboxLabels":[{"value":"Yanıtı çok beğendim"},{"value":"Yanıtta gerekli bilgiler var"},{"value":"Kolay anlaşılır"},{"value":"Diğer"}],"negativeCheckboxLabels":[{"value":"Uygunsuz veya aşağılayıcı yanıt"},{"value":"Soruma yanıt verilmedi"},{"value":"Bilgi hataları var"},{"value":"Bilgi yetersiz"},{"value":"Bilgi güncel değil"},{"value":"Görüntüleme hataları"},{"value":"Yanıtta kullanılan kaynaklar güvenilir değil"},{"value":"Bu soru için yanıt gerekmiyor"},{"value":"Diğer"}]},"dialogStoreProps":{"baseUrl":"","baseUrlWs":""},"globalStoreProps":{"imageBackendUrl":"https://yandex.com.tr/images-apphost/image-download?cbird=171","query":"","retina":false,"avatarId":"0","isHermione":false,"isMacOS":false,"tld":"com.tr","isEmbeddedFuturis":false,"isLoggedIn":false,"brand":"yazeka","reqId":"1753349710872135-9898956048909175528-balancer-l7leveler-kubr-yp-vla-171-BAL","device":{"isIOS":false,"platform":"desktop"}},"baobab":{"parentNode":{"context":{"genInfo":{"prefix":"g6z1w03-0-1"},"ui":"desktop","service":"neurolib","fast":{"name":"neuro_library","subtype":"question"}}}}},"type":"neuro_library","subtype":"question"},"g6z13":{"state":{"relatedMaterials":[{"favicons":["https://favicon.yandex.net/favicon/v2/https://enpopulersorular.com.tr/sinus-kosinus-tanjant-ve-kotanjant-nedir/?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://bikifi.com/biki/trigonometrik-fonksiyonlar/?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://www.trigonometri.gen.tr/sin-cos-ve-tan-nedir-trigonometri-neyi-ifade-eder.html?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://www.hurriyet.com.tr/egitim/sin-cos-tan-ve-cot-degerleri-nelerdir-ve-sayilari-kactir-42007530?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://tr.khanacademy.org/math/trigonometry/trigonometry-right-triangles/reciprocal-trig-ratios/a/sine-and-cosine-are-cofunctions?size=16&stub=1"],"href":"/yacevap/c/bilim-ve-egitim/q/cos-ve-sinus-ayni-sey-mi-4114971824","header":"Cos ve sinüs aynı şey mi?","teaser":"Sinüs ve kosinüs farklı trigonometrik fonksiyonlardır. Sinüs (sin), bir açının karşısındaki dik kenarın hipotenüse oranıdır. Kosinüs (cos) ise bir açının yanındaki kenarın hipotenüse oranıdır.","tags":[{"href":"/yacevap/t/matematik","text":"#Matematik"},{"href":"/yacevap/t/trigonometri","text":"#Trigonometri"},{"href":"/yacevap/t/sinus","text":"#Sinüs"}]},{"favicons":["https://favicon.yandex.net/favicon/v2/https://www.acilar.gen.tr/sinus-ve-kosinus-aci-donusumleri-nasil-yapilir.html?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://www.cnnturk.com/egitim/trigonometri-donusum-formulleri-nelerdir-donusum-formulleri-ispatlari-1858963?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://bilimgenc.tubitak.gov.tr/makale/trigonometri-sinus-kosinus-ve-tanjant-nedir?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://www.fonksiyon.gen.tr/trigonometrik-fonksiyonlarin-donusum-formulleri-nelerdir.html?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://www.zfcakademi.com/sin-cos-teoremi/?size=16&stub=1"],"href":"/yacevap/c/bilim-ve-egitim/q/sinus-ve-kosinus-arasindaki-donusum-formulu-nedir-380918727","header":"Sinüs ve kosinüs arasındaki dönüşüm formülü nedir?","teaser":"Sinüs ve kosinüs arasındaki dönüşüm formülü şu şekildedir: sin(θ) = cos(90° - θ).","tags":[{"href":"/yacevap/t/matematik","text":"#Matematik"},{"href":"/yacevap/t/trigonometri","text":"#Trigonometri"},{"href":"/yacevap/t/formuller","text":"#Formüller"}]},{"favicons":["https://favicon.yandex.net/favicon/v2/https://www.trigonometri.gen.tr/trigonometri-cetveli-nasil-kullanilir-ve-ne-ise-yarar.html?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://www.fonksiyon.gen.tr/sinus-ve-kosinus-fonksiyonlarinin-isaretleri-nedir.html?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://muallims.blogspot.com/2013/01/trigonometrik-degerler-tablosu.html?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://www.matematiksel.org/nereden-cikti-bu-sinus-ile-kosinus/?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://bikifi.com/biki/trigonometrik-fonksiyonlar/?size=16&stub=1"],"href":"/yacevap/c/bilim-ve-egitim/q/sinus-ve-kosinus-cetveli-nasil-okunur-689462154","header":"Sinüs ve kosinüs cetveli nasıl okunur?","teaser":"Sinüs ve kosinüs cetvelini okumak için aşağıdaki adımları izlemek gerekir: 1. Açının Belirlenmesi: İlk olarak, cetvelin kullanılacağı açının belirlenmesi gereklidir. 2. Trigonometrik Değerlerin Bulunması: Cetvelin üzerinde, belirlenen açının karşısındaki sinüs, kosinüs ve tanjant değerleri okunur. 3. Hesaplamaların Yapılması: Okunan trigonometrik değerler, gerekli hesaplamalarda kullanılmak üzere formüllere yerleştirilir.","tags":[{"href":"/yacevap/t/matematik","text":"#Matematik"},{"href":"/yacevap/t/trigonometri","text":"#Trigonometri"},{"href":"/yacevap/t/hesaplama","text":"#Hesaplama"}]},{"favicons":["https://favicon.yandex.net/favicon/v2/https://yontemlerlematematik.wordpress.com/2017/02/04/trigonometri-4-grafikler-ve-periyot/?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://bilimgenc.tubitak.gov.tr/makale/trigonometri-sinus-kosinus-ve-tanjant-nedir?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://www.matematikvegeometri.com/trigonometri/?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://www.acilmatematik.com.tr/images/files/4a15c70c-00ce-4449-967d-e29a3fa72007.pdf?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://www.mathgptpro.com/tr/blog/introduction-unit-circle-formulas-sine-cosine-functions-quizzes-trigonometry?size=16&stub=1"],"href":"/yacevap/c/bilim-ve-egitim/q/sinus-ve-cosinus-periyodu-nasil-bulunur-2204951746","header":"Sinüs ve cosinüs periyodu nasıl bulunur?","teaser":"Sinüs ve kosinüs fonksiyonlarının periyodu 2π'dir.","tags":[{"href":"/yacevap/t/matematik","text":"#Matematik"},{"href":"/yacevap/t/trigonometri","text":"#Trigonometri"},{"href":"/yacevap/t/fonksiyonlar","text":"#Fonksiyonlar"},{"href":"/yacevap/t/periyot","text":"#Periyot"}]},{"favicons":["https://favicon.yandex.net/favicon/v2/https://www.trigonometri.gen.tr/sinus-ve-kosinus-trigonometrik-denklemler-nasil-cozulur.html?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://bilimgenc.tubitak.gov.tr/makale/trigonometri-sinus-kosinus-ve-tanjant-nedir?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://www.zfcakademi.com/sin-cos-teoremi/?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://tr.wikipedia.org/wiki/Trigonometrik_%C3%B6zde%C5%9Fliklerin_ispatlar%C4%B1?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://www.matematikkolay.net/wp-content/uploads/2017/03/Trigonometri-4.pdf?size=16&stub=1"],"href":"/yacevap/c/bilim-ve-egitim/q/sinus-ve-kosinus-denklemi-nasil-cozulur-2640126017","header":"Sinüs ve kosinüs denklemi nasıl çözülür?","teaser":"Sinüs ve kosinüs denklemleri çeşitli yöntemlerle çözülebilir: 1. Grafik Yöntemi: Fonksiyonların grafiklerini çizerek kesişim noktalarını bulmak, çözümleri görsel olarak belirlemenin etkili bir yoludur. 2. İnvers Trigonometrik Fonksiyonlar: sin^-1(a) veya cos^-1(b) kullanılarak çözüm bulunabilir. 3. Trigonometrik Özdeşlikler: sin^2(x) + cos^2(x) = 1 gibi özdeşlikler kullanılarak denklemler daha basit bir forma dönüştürülebilir. Örnek bir sinüs denklemi çözümü: sin(x) = 0.5 denklemi için: 1. x = 30° + k360° ve x = 150° + k360° (k, herhangi bir tam sayı) çözümleri elde edilir.","tags":[{"href":"/yacevap/t/matematik","text":"#Matematik"},{"href":"/yacevap/t/trigonometri","text":"#Trigonometri"},{"href":"/yacevap/t/denklemler","text":"#Denklemler"},{"href":"/yacevap/t/cozumyontemleri","text":"#ÇözümYöntemleri"}]},{"favicons":["https://favicon.yandex.net/favicon/v2/https://www.matematiksel.org/nereden-cikti-bu-sinus-ile-kosinus/?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://yontemlerlematematik.wordpress.com/2017/02/04/trigonometri-2-esas-olcu-ve-trigonometrik-fonksiyonlar/?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://www.trigonometri.gen.tr/birim-cemberde-trigonometrik-fonksiyonlar-nasil-tanimlanir.html?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://tr.khanacademy.org/math/trigonometry/unit-circle-trig-func/unit-circle-definition-of-trig-functions/a/trig-unit-circle-review?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://ematematik.top/kosinus-ve-sinus-fonksiyonlari-11-sinif-962.html?size=16&stub=1"],"href":"/yacevap/c/bilim-ve-egitim/q/birim-cembere-gore-sinus-ve-kosinus-nasil-tanimlanir-1532768017","header":"Birim çembere göre sinüs ve kosinüs nasıl tanımlanır?","teaser":"Birim çembere göre sinüs ve kosinüs fonksiyonları şu şekilde tanımlanır: - Sinüs (sin): Bir açının sinüsü, birim çember üzerinde o açıyla oluşturulan noktanın y koordinatına eşittir. - Kosinüs (cos): Bir açının kosinüsü, birim çember üzerinde o açıyla oluşturulan noktanın x koordinatına eşittir.","tags":[{"href":"/yacevap/t/matematik","text":"#Matematik"},{"href":"/yacevap/t/trigonometri","text":"#Trigonometri"},{"href":"/yacevap/t/sinus","text":"#Sinüs"}]},{"favicons":["https://favicon.yandex.net/favicon/v2/https://eodev.com/gorev/1231086?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://ematematik.top/trigonometrik-fonksiyonlarin-isaretleri-11-sinif-1016.html?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://eksisozluk.com/butun-sinif-kara-tahtada-cosar--1984620?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://sider.ai/en/create/video/ai-video-shortener/explore/c28a254a-1ff2-43f4-99a2-4be67abb6703?size=16&stub=1","https://favicon.yandex.net/favicon/v2/https://www.mmsrn.com/trigonometri-1-2-3-4-bolgelerde-hangileri-negatif-hangileri-pozitiftir/?size=16&stub=1"],"href":"/yacevap/c/bilim-ve-egitim/q/hangi-bolgelerde-sinus-ve-kosinus-pozitiftir-1772170664","header":"Hangi bölgelerde sinüs ve kosinüs pozitiftir?","teaser":"Sinüs ve kosinüsün pozitif olduğu bölgeler trigonometride şu şekildedir: 1. Birinci Bölge: 0° - 90° arası, hem sinüs hem de kosinüs pozitiftir. 2. Dördüncü Bölge: 270° - 360° arası, sadece kosinüs pozitiftir.","tags":[{"href":"/yacevap/t/matematik","text":"#Matematik"},{"href":"/yacevap/t/trigonometri","text":"#Trigonometri"},{"href":"/yacevap/t/sinus","text":"#Sinüs"}]}],"baobab":{"parentNode":{"context":{"genInfo":{"prefix":"g6z1w04-0-1"},"ui":"desktop","service":"neurolib","fast":{"name":"neuro_library","subtype":"related"}}}}},"type":"neuro_library","subtype":"related"},"g6z14":{"state":{"tld":"com.tr","isIos":false,"isQuestionPage":true,"baobab":{"parentNode":{"context":{"genInfo":{"prefix":"g6z1w05-0-1"},"ui":"desktop","service":"neurolib","fast":{"name":"neuro_library","subtype":"ask_question"}}}}},"type":"neuro_library","subtype":"ask_question"},"g6z15":{"state":{"generalLinks":[{"id":"privacy-policy","text":"Gizlilik politikası","url":"https://yandex.com.tr/legal/privacy_policy/"},{"id":"terms-of-service","text":"Kullanıcı sözleşmesi","url":"https://yandex.com.tr/legal/tos/"},{"id":"report-error","text":"Hata bildir","url":"https://forms.yandex.com.tr/surveys/13748122.01a6645a1ef15703c9b82a7b6c521932ddc0e3f7/"},{"id":"about-company","text":"Şirket hakkında","url":"https://yandex.com.tr/project/portal/contacts/"}],"copyright":{"url":"https://yandex.com.tr","currentYear":2025},"socialLinks":[{"type":"tiktok","url":"https://redirect.appmetrica.yandex.com/serve/677728751613663494","title":"TikTok"},{"url":"https://redirect.appmetrica.yandex.com/serve/173325632992778150","type":"youtube","title":"Youtube"},{"url":"https://redirect.appmetrica.yandex.com/serve/677728793472889615","type":"facebook","title":"Facebook"},{"url":"https://redirect.appmetrica.yandex.com/serve/1182131906657966033","type":"instagram","title":"Instagram"},{"url":"https://redirect.appmetrica.yandex.com/serve/893945194569821080","type":"x","title":"X"}],"categoriesLink":[],"disclaimer":"Seçili sitelerdeki metinlere göre Yazeka tarafından oluşturulan yanıtlardır. Hatalar içerebilir. Önemli bilgileri kontrol ediniz.","baobab":{"parentNode":{"context":{"genInfo":{"prefix":"g6z1w06-0-1"},"ui":"desktop","service":"neurolib","fast":{"name":"neuro_library","subtype":"footer"}}}}},"type":"neuro_library","subtype":"footer"}}