Logaritma denklemi çözmek için aşağıdaki adımlar izlenir: 1. Denklemdeki logaritma ifadesini tek bir tarafta toplamak. 2. Denklemin her iki tarafını da aynı tabana yükseltmek suretiyle denklemi basitleştirmek. Örnek bir logaritma denklemi ve çözümü: Denklem: log₂ 32 - log₃ 81 + log₁₀ (1/100). Çözüm: 1. İlk olarak, her bir logaritma ifadesinin tabanını ve argümanını belirlemek gerekir: log₂ 32 = log₂ (2⁵) ve log₃ 81 = log₃ (3⁴). 2. Daha sonra, üstel forma dönüştürmek: 2⁵ - 3⁴ ve 1/100 = 10⁻². 3. Son olarak, üsleri çözerek denklemi sağlamak: 32 - 81 = -49 ve 10⁻² = 0,01. Bu durumda, denklemin çözümü −49 + 0,01 = −48,99 olur.