Jensen-Shannon Divergence (JSD), iki olasılık dağılımının farkını ölçmek için kullanılan bir istatistiksel metriktir. Yorumlanması: 1. Simetri: JSD simetriktir, yani P ve Q dağılımları arasındaki sapma, Q ve P arasındaki sapmaya eşittir. 2. Sınırlandırma: 0 ile log(2) arasında değişir; 0, dağılımların aynı olduğunu, log(2) ise tamamen farklı olduklarını gösterir. 3. Kullback-Leibler Divergence (KLD) ile ilişki: JSD, KLD'nin ortalama değerini temsil eder ve bu nedenle daha yorumlanabilir ve çalışması daha kolaydır. Kullanım alanları: JSD, makine öğreniminde belge benzerliği, görüntü işleme, anomali tespiti ve tavsiye sistemlerinde kullanılır.