• Buradasın

    Yöneylem Araştırması ve Lineer Programlama Dersi

    youtube.com/watch?v=d2Cll53GN1s

    Yapay zekadan makale özeti

    • Bu video, bir eğitmen tarafından sunulan akademik bir ders formatındadır.
    • Videoda yöneylem araştırması ve lineer programlama konuları ele alınmaktadır. İlk bölümde hem tekniği anlatılmakta, kısıtların büyük eşit veya eşitlik durumunda olduğu durumlarda yapay değişkenlerin kullanımı, başlangıç tablosunun oluşturulması ve amaç fonksiyonuna ceza katsayısıyla yapay değişkenlerin eklenmesi açıklanmaktadır. İkinci bölümde ise başlangıç tablosunun oluşturulması, pivot elemanının belirlenmesi ve satır işlemlerinin nasıl yapılacağı adım adım gösterilmektedir.
    • Videoda özellikle minimizasyon problemlerinde en büyük pozitif değer temele girecek değişkeni belirleme ve pozitif en küçük oran temelden çıkacak değişkeni belirleme yöntemleri detaylı şekilde anlatılmaktadır. Ayrıca bir sonraki derste iki aşamalı yöntem anlatılacağı belirtilmektedir.
    00:09Yöneylem Araştırması Dersinin Hem Tekniği
    • Bu derste hem tekniğinin tekniği ve işlemlerini anlatılacak, yapay değişken kullanımı zorunlu olacak.
    • Primal simpleks yöntemi tüm kısıtların küçük eşit olması ve sağ taraf değerlerinin pozitif olması durumunda kullanılır.
    • Kısıtlardan en az bir tanesi büyük eşit veya eşitlik durumunda ise primal simpleks kullanılamaz, hem tekniği veya iki aşamalı yöntem kullanılmalıdır.
    01:57Hem Tekniğinin Örnek Uygulaması
    • Minimizasyon örneğinde amaç fonksiyonu minimum z = 4x₁ + x₂ olarak verilmiştir.
    • Kısıtlar arasında eşitlik ve büyük eşit durumları olduğu için primal simpleks uygulanamaz, hem tekniği veya iki aşamalı yöntem kullanılabilir.
    • Bu derste önce hem tekniği anlatılacak, daha sonra iki aşamalı yöntem anlatılacaktır.
    03:11Standart Hale Getirme İşlemleri
    • Eşitlik durumundaki kısıtlara herhangi bir değişken ilave edilmez.
    • Büyük eşit durumundaki kısıtlara artık değişken çıkarılır, küçük eşit durumundaki kısıtlara ise dolgu değişkeni ilave edilir.
    • Hem tekniğinde de başlangıç tablosunda mutlaka birim matrisin görülmesi gerekir.
    04:51Yapay Değişken Kullanımı
    • Modeli çözebilmek için kısıtlara yapay değişken ilave edilmesi gerekir.
    • Yapay değişken sadece eşitlik durumunda ve büyük eşit durumunda olan kısıtlara eklenir.
    • Yapay değişken, dolgu değişkeni gibi davranarak birim matrisi elde etmeyi sağlar.
    06:52Amaç Fonksiyonuna Yapay Değişkenin Ekleme
    • Yapay değişkenler amaç fonksiyonuna M ceza katsayısıyla ilave edilir.
    • Minimizasyonda yapay değişkenlerin katsayıları pozitiftir (M·r₁, M·r₂), maksimizasyonda ise negatiftir.
    • Yapay değişkenlerin kısıtlardan çekilip amaç fonksiyonuna yerleştirilmesi gerekir.
    10:41Lineer Programlama Probleminin Çözümü
    • m değişkeni parantez içinde çarpılarak z = 4x₁ + x₂ + 3m - 3m - 1m - 2x₂ + 6m - 4mx₁ - 3, mx₂ + x₃ şeklinde genişletildi.
    • x₁ ve x₂ değerleri toplanarak z = -4 - 7m x₁ + (-1 + 4m) x₂ + (-m) x₃ = 9m şeklinde başlangıç tablosuna yazıldı.
    • Başlangıç tablosunda değişkenler sol tarafa, sabitler sağ tarafa toplanarak düzenlendi.
    14:08Başlangıç Tablosunun Oluşturulması
    • Başlangıç tablosuna x₁'in katsayısı olarak +7, x₂'nin katsayısı olarak -1 + 4m, x₃'ün katsayısı olarak -m yazıldı.
    • r₁, r₂ ve x₄ değişkenleri başlangıçta temel değişkenler olarak girer, ancak nihai çözümde yapay değişkenlerin (r₁ ve r₂) kalmaması beklenir.
    • Bu bir minimizasyon örneğidir ve minimizasyonda z satırına bakarak temele girecek değişkeni ve sağ tarafa bakarak temelden çıkacak değişkeni belirleriz.
    15:58Tablo Güncellemesi
    • En büyük pozitif değer m büyük bir sayı olduğuna göre 7, bu da x₁'in katsayısı olduğu için x₁ temele girecektir.
    • Temelden çıkacak değişkeni belirlerken sağ taraf değerlerini anahtar sütun değerleri ile oranlayarak pozitif en küçük değeri (1) bulduk, bu da r₁'in temelden çıkacağını gösteriyor.
    • Pivot eleman 3 olduğundan, yeni anahtar satırı bulmak için 3 ile anahtar satır elemanlarının tamamını bölerek 3/3, 1/3, 1/3, 1/3, 3/3 değerlerini elde ettik.

    Yanıtı değerlendir

  • Yazeka sinir ağı makaleleri veya videoları özetliyor