• Buradasın

    Yapay Sinir Ağları ve Uygulamaları kitabı ne anlatıyor?

    Yazeka

    Arama sonuçlarına göre oluşturuldu

    "Yapay Sinir Ağları ve Uygulamaları" kitabı, yapay sinir ağları (YSA) ve bu ağların çeşitli alanlardaki uygulamalarını anlatmaktadır.
    Kitapta ele alınan konular şunlardır:
    1. Yapay Sinir Ağlarının Temelleri: YSA'nın ne olduğu, nasıl çalıştığı, insan beyni ile karşılaştırılması ve yararları 1.
    2. YSA'nın Oluşturulması: Yapay sinir ağlarının yapısı, katmanlar, iletişim ve bağlantı çeşitleri 1.
    3. Yaygın YSA Modelleri: Geri yayılım ağı, delta bar delta, hamming ağı gibi farklı YSA modelleri 1.
    4. Tahmin ve Sınıflandırma: YSA'nın tahmin ve sınıflandırma amaçlı kullanımı, MATLAB ile YSA kurulumu ve simülasyonu 24.
    5. Uygulama Alanları: YSA'nın endüstriyel, finans, tıp, iletişim gibi çeşitli alanlardaki uygulamaları 13.
    Bu kitap, YSA konusunda başlangıç seviyesinden ileri seviyelere kadar bilgi sunmaktadır 1.
    5 kaynaktan alınan bilgiyle göre:

    Konuyla ilgili materyaller

    Sinir ağı eğitimi nasıl yapılır?

    Sinir ağı eğitimi aşağıdaki adımları içerir: 1. Veri Toplama ve Ön İşleme: Eğitim ve test için verilerin toplanması, düzenlenmesi, temizlenmesi ve eksik değerlerin ele alınması. 2. Sinir Ağı Mimarisi Seçimi: Sorununuza uygun mimari türünün belirlenmesi (örneğin, ileri beslemeli sinir ağı, evrişimli sinir ağı, tekrarlayan sinir ağı). 3. Model Başlatma: Sinir ağının ağırlık ve önyargılar gibi parametrelerinin başlatılması. 4. İleri Yayılım: Giriş verilerinin ağ üzerinden geçirilerek tahminlerin yapılması. 5. Kayıp Hesaplama: Tahmin edilen çıktının gerçek çıktıyla karşılaştırılarak kaybın hesaplanması. 6. Geri Yayılım: Optimizasyon algoritması (örneğin, gradyan iniş) kullanılarak ağın ağırlıklarının güncellenmesi. 7. Yineleme: Modelin performansını artırmak için ileri yayılım, kayıp hesaplama ve geri yayılım adımlarının tekrarlanması. Bu süreç, genellikle TensorFlow, PyTorch gibi derin öğrenme çerçeveleri kullanılarak gerçekleştirilir.

    Makine öğrenmesinde hangi yapay sinir ağı kullanılır?

    Makine öğrenmesinde çeşitli yapay sinir ağı (YSA) türleri kullanılır, bunlar arasında en yaygın olanları şunlardır: 1. Feedforward Sinir Ağı: En basit YSA türüdür ve bilgiler giriş katmanından çıkış katmanına tek yönde taşınır. 2. Yinelenen Sinir Ağı (RNN): Öğrenme yetenekleri güçlüdür ve zaman serisi tahmini, el yazısı tanıma gibi karmaşık görevler için kullanılır. 3. Evrişimli Sinir Ağı (CNN): Görüntü tanıma ve öneren sistemler gibi alanlarda etkilidir. 4. Üretken Çekişmeli Ağ (GAN): Gerçekçi içerikler oluşturmak için eğitilen üretken modellerdir. 5. Transformatörler: Metin veya zaman serisi verileri gibi dizileri içeren sorunları çözmek için kullanılır. Ayrıca, Keras, TensorFlow ve PyTorch gibi popüler kütüphaneler, YSA modellerini geliştirmek için yaygın olarak kullanılır.

    Evrişimli sinir ağları hangi alanlarda kullanılır?

    Evrişimli sinir ağları (CNN) aşağıdaki alanlarda yaygın olarak kullanılır: 1. Görüntü Tanıma ve Sınıflandırma: Nesne tanıma, yüz tanıma ve görüntü segmentasyonu gibi görsel işleme problemlerinde oldukça başarılı sonuçlar verir. 2. Sürücüsüz Arabalar: Otonom araçlarda, çevre tespiti ve nesne algılama için kullanılır. 3. Sağlık Sektörü: Tıbbi görüntü analizinde, radyologlara tümör ve kırık gibi anomalileri tespit etmede yardımcı olur. 4. Güvenlik: Güvenlik kameralarında, güvenli olmayan veya uygunsuz içerikleri otomatik olarak çıkarmak için kullanılır. 5. Sosyal Medya: Sosyal medya filtreleme ve davranışsal veri analizi yoluyla hedeflenen pazarlama için kullanılır. 6. Finans: Dolandırıcılık tespiti ve kredi riski değerlendirmesi gibi finansal analizlerde kullanılır.

    Yapay sinir ağları nedir?

    Yapay sinir ağları (YSA), insan beyninin sinir ağlarını model alan, birbirine bağlı düğümlerden (yapay nöronlar) oluşan yapılardır. Çalışma mantığı şu şekildedir: 1. Girdi Katmanı: Dış dünyadan gelen verileri alır. 2. Gizli Katmanlar: Girdi verilerini işleyerek ara sonuçlar üretir ve bu süreçte bağlantılar güçlendirilir veya zayıflatılır. 3. Çıktı Katmanı: İşlenmiş verilere dayanarak nihai sonuçları üretir. Kullanım alanları arasında: - Görüntü Tanıma: Yüz tanıma, güvenlik sistemleri. - Doğal Dil İşleme: Metin çeviri, müşteri hizmetleri botları. - Anomali Tespiti: Üretim hatası ve kredi kartı dolandırıcılığı tespiti. YSA, büyük veri setlerinden öğrenme yeteneğiyle, karmaşık problemlerin çözümünde güçlü bir araç olarak kullanılır.

    Yapay sinir ağlarının temel ilkeleri nelerdir?

    Yapay sinir ağlarının temel ilkeleri şunlardır: 1. Nöronlar (Neurons): Girişleri alan temel birimlerdir ve her nöron bir eşik değeri ve aktivasyon fonksiyonu tarafından yönetilir. 2. Bağlantılar (Connections): Nöronlar arasındaki bilgi taşıyan bağlantılardır ve ağırlıklar ve önyargılar ile düzenlenir. 3. İletim Fonksiyonları (Propagation Functions): Verinin nöron katmanları arasında işlenmesini ve iletilmesini sağlar. 4. Öğrenme Kuralı (Learning Rule): Ağın doğruluğunu artırmak için ağırlıklar ve önyargıları zaman içinde ayarlayan yöntemdir. Çalışma süreci üç ana aşamadan oluşur: 1. İleri Yayılım (Forward Propagation): Girdi verileri ağa beslenir ve katmanlar boyunca ilerler. 2. Kayıp Hesaplama (Loss Calculation): Çıktı katmanındaki sonuçlar, gerçek değerlerle karşılaştırılır ve hata hesaplanır. 3. Geri Yayılım (Backpropagation): Hata, geri yayılım algoritması ile ağ boyunca geriye doğru yayılır ve ağırlıklar güncellenir. Yapay sinir ağları, büyük miktarda veriden öğrenme ve karmaşık problemleri çözme yetenekleriyle kritik bir rol oynar.

    Yinelemeli sinir ağı nedir?

    Yinelemeli sinir ağı (YSA), sıralı veri girişini işlemek ve belirli bir sıralı veri çıkışına dönüştürmek için eğitilmiş derin öğrenme modelidir. YSA'ların temel özellikleri: - Nöronlar: Giriş, çıktı ve gizli katmanlar halinde düzenlenmiştir. - Geri bildirim döngüleri: Bilgiyi ağ içinde saklamasını sağlar. - Uzun vadeli bağımlılıklar: Geçmişteki verileri hatırlayarak gelecekteki tahminleri iyileştirir. Kullanım alanları: - Doğal dil işleme: Metin sınıflandırma, dil çevirisi ve duygu analizi. - Zaman serisi tahmini: Hisse senedi fiyat tahmini ve anomali tespiti. - Görüntü tanıma: Evrişimli sinir ağları ile birlikte kullanılır.

    Sinir ağı nedir?

    Sinir ağı, bilgisayarlara verileri insan beyninden esinlenerek işleme yeteneği kazandıran bir yapay zeka yöntemidir. Bu ağlar, birbirine bağlı düğümlerden veya "sinirlerden" oluşan katmanlardan oluşur ve makine öğrenimi süreçleriyle çalışırlar. Bazı sinir ağı kullanım alanları: - Görüntü işleme: Nesneleri tanıma ve sınıflandırma. - Konuşma tanıma: İnsan konuşmasını analiz etme. - Doğal dil işleme: Metin verilerinde öngörüleri çıkarma. - Finansal tahminler: Piyasa trendlerini analiz etme. - Tıbbi tanılama: Tıbbi görüntüleri yorumlama.