• Buradasın

    De learning ne anlatıyor?

    Yazeka

    Arama sonuçlarına göre oluşturuldu

    Deep learning (derin öğrenme), herhangi bir insan müdahalesi gerektirmeden, algoritmalar ve büyük veri kümeleri kullanarak kalıplar bulan ve çıktılar oluşturup yanıtlar veren bir makine öğrenme tekniğidir 23.
    Derin öğrenme, yapay zekanın bir bileşeni olup, makinelerin insan zekasını taklit ederek öğrenmesini sağlar 25. Bu teknoloji, görüntü işleme, yüz tanıma, doğal dil işleme gibi alanlarda başarılı sonuçlar elde etmektedir 24.
    Derin öğrenmenin bazı çalışma prensipleri:
    • Yapay sinir ağları: İnsan beynindeki nöronlardan esinlenerek tasarlanmıştır 23.
    • Çoklu katmanlar: Derin öğrenme, birden fazla gizli katmana sahiptir 3.
    • Ağırlık ayarlamaları: Nöronlar arasındaki bağlantılar, giriş değerinin önemini belirleyen bir ağırlık ile ilişkilidir 3.
    • Yineleme ve maliyet fonksiyonu: Hata oranını en aza indirmek için veri kümesi üzerinde yineleme yapılır ve maliyet fonksiyonu kullanılır 3.
    5 kaynaktan alınan bilgiyle göre:

    Konuyla ilgili materyaller

    Transfer Learning ve fine-tuning arasındaki fark nedir?

    Transfer Learning (TL) ve Fine-Tuning (FT) arasındaki temel farklar şunlardır: Eğitim Kapsamı: TL'de yalnızca son katmanlar yeniden eğitilir, modelin geri kalan katmanları dondurulur. FT'de modelin tüm katmanları veya belirli katmanları yeniden eğitilir. Veri Gereksinimleri: TL, önceden öğrenilmiş özelliklerin yeniden kullanılması nedeniyle daha küçük veri setleriyle iyi çalışır. FT, modelin daha kapsamlı bir şekilde uyarlanması gerektiği için daha fazla veri gerektirebilir. Hesaplama Maliyeti: TL, yalnızca son katmanlar eğitildiği için daha az hesaplama maliyeti gerektirir. FT, tüm model veya daha fazla katman eğitildiği için daha fazla hesaplama maliyeti gerektirir. Uyarlanabilirlik: TL, yeni görevlere sınırlı uyum sağlar, genellikle sadece son katmanlar değiştirilir. FT, yeni görevlere daha derinlemesine uyum sağlayarak daha yüksek uyarlanabilirlik sunar. Aşırı Öğrenme Riski: TL'de, yalnızca son katmanlar eğitildiği için aşırı öğrenme riski daha düşüktür. FT'de, özellikle küçük veri setleri ve çok sayıda eğitilebilir parametre olduğunda aşırı öğrenme riski daha yüksektir. Kullanım Senaryoları: TL kullanımı: Yeni veri seti küçük olduğunda, yeni görev orijinal göreve benzer olduğunda ve sınırlı hesaplama kaynakları gerektiğinde tercih edilir. FT kullanımı: Veri seti, aşırı öğrenme riski olmadan birden fazla katmanı yeniden eğitecek kadar büyük olduğunda, yeni görev orijinal görevden önemli ölçüde farklı olduğunda ve yeterli zaman ve hesaplama kaynakları mevcut olduğunda tercih edilir.

    Deep Learning ve makine öğrenmesi arasındaki fark nedir?

    Derin öğrenme (deep learning), makine öğreniminin bir alt kümesidir. Derin öğrenme ve makine öğrenmesi arasındaki temel farklar: Veri miktarı: Makine öğrenmesi küçük veya orta boyuttaki veriler ile çalışırken, derin öğrenme için daha büyük veriler gereklidir. Donanım: Derin öğrenme analizleri yapmak için güçlü bilgisayarlar gerekirken, makine öğrenmesi için düşük veya orta seviyede bilgisayarlar yeterlidir. Öznitelik mühendisliği: Makine öğrenmesinde özelliklerin kullanıcılar tarafından doğru bir şekilde tanımlanması ve oluşturulması gerekir, derin öğrenmede ise verilerden üst düzey özellikler öğrenilir ve yeni özellikler oluşturulur. Eğitim zamanı: Makine öğrenmesi algoritmalarının eğitim süresi kısa (en fazla bir veya iki saat) iken, derin öğrenme algoritmalarının eğitim süresi uzundur (günler veya haftalar). Öğrenme yaklaşımı: Makine öğrenmesi, öğrenme sürecini daha küçük adımlara ayırır ve her bir adımdaki sonuçları tek bir çıkışta birleştirir. Uygulama alanları: Makine öğrenimi, yapılandırılmış ve etiketlenmiş verilerle yürütülen iyi tanımlanmış görevler için idealdir; derin öğrenme ise yapılandırılmamış verileri anlamlandırmayı gerektiren karmaşık görevler için idealdir.

    E-learning ve uzaktan eğitim aynı mı?

    E-learning (e-öğrenme) ve uzaktan eğitim aynı anlama gelir. Uzaktan eğitim, elektronik ortamda yürütülen öğrenme sürecini ifade eder. E-learning kavramı, bilgisayarların kişisel kullanım için pratik olarak kullanılmaya başlandığı andan itibaren ortaya çıkmıştır.

    Deep learning hangi alanlarda kullanılır?

    Deep learning (derin öğrenme), çeşitli alanlarda kullanılmaktadır: Sağlık: Hastalık teşhisi, medikal görüntü analizi. Otomotiv: Otonom araç sistemleri. Finans: Dolandırıcılık tespiti, hisse senedi tahmini. E-ticaret: Öneri sistemleri. Güvenlik: Yüz tanıma sistemleri. Dil işleme: Otomatik çeviri, chatbotlar. Endüstri ve üretim: Kalite kontrol, öngörücü bakım. Ayrıca, derin öğrenme bilgisayarlı görü, ses tanıma, doğal dil işleme ve oyun stratejileri gibi alanlarda da başarıyla kullanılmaktadır.