PCA (Principal Component Analysis) ve kümeleme (clustering) arasındaki ilişki şu şekilde açıklanabilir: Boyut Azaltma: PCA, veri setinin boyutlarını azaltarak, en fazla varyansı açıklayan birkaç sürekli değişkene odaklanır. Görselleştirme: PCA, düşük boyutlu grafikler sunarak veri kümesindeki desenleri görselleştirmeye yardımcı olur. Keşifsel Veri Analizi: Hem PCA hem de kümeleme, sınıf üyeliği hakkında bilgi kullanmadan, veri kümesini keşfetmek için kullanılır. Ancak, PCA ve kümeleme arasındaki ilişki, Ding ve He'nin 2004 tarihli makalesinde belirtildiği gibi, PCA'nın seyrek bir versiyonu olarak da görülebilir.