İkinci dereceden denklemler, çözüm kümesi ve köklerin niteliğine göre farklı türlere ayrılabilir: Gerçek köklerin varlığına göre: İki gerçek kök: Diskriminant (Δ) > 0 ise. Tek (çift katlı) gerçek kök: Diskriminant (Δ) = 0 ise. Gerçek kök yok, karmaşık kökler: Diskriminant (Δ) < 0 ise. Çarpanlarına ayrılabilirlik durumuna göre: Çarpanlarına ayrılabilen denklemler: Kolayca çarpanlarına ayrılabilen denklemler, çarpanlara ayırma yöntemiyle çözülür. Tam kare ifadeler: Tam kare bir ifade olan denklemler, kareye tamamlama yöntemiyle çözülür. Üç terimli ifadeler: Tam kare olmayan üç terimli ifadeler, belirli bir yöntem izlenerek çarpanlarına ayrılabilir.