• Gündem
  • Alışveriş
  • Finans
  • YaCevap
  • Seyahat
  • Video
  • Görsel
  • Ana Sayfa
  • İnsanlar
  • Sinema
  • Coğrafya
  • Kurum
  • Bilim
  • Aygıt
  • Müzik
  • Yazılım
  • Canlılar
  • İlaç
  • Olay
  • Gida
  • Otomobil
  • Kimyasal Bileşim
  • Hastalık
  • Diğerleri
  • Buradasın
    • Yawiki ›
    • Bilim ›

    Riemann integrali

    Matematiksel Kavram
    tr.wiki34.com sitesinden görsel
    youtube.com sitesinden görsel
    youtube.com sitesinden görsel
    nagwa.com sitesinden görsel
    commons.m.wikimedia.org sitesinden görsel

    Yazeka

    Arama sonuçlarına dayanarak oluşturuldu

    Riemann integrali, Bernhard Riemann tarafından geliştirilen ve bir fonksiyonun belirli bir aralıktaki integralini hesaplamak için kullanılan matematiksel bir kavramdır. Temel olarak, fonksiyonu küçük dikdörtgenlere bölerek alanı tahmin etmeye dayanır.

    Uygulamaları arasında mühendislik, fizik ve diferansiyel denklemler bulunur. Örneğin, bir nesnenin kat ettiği mesafeyi hesaplamak veya fonksiyonların ortalama değerini bulmak için kullanılır.

    Riemann integralinin sınırları vardır: yalnızca sürekli ve sınırlı fonksiyonlar için geçerlidir. Lebesgue integrali gibi diğer integral tanımlarına kıyasla daha dar bir kapsama sahiptir.

    Daha fazla
    byjus.com
    saicalculator.com
    vedantu.com
    en.wikipedia.org

    İntegral

    Lebesgue
    integrali
    İntegral
    Çokkatlı
    integral
    İlkel
    fonksiyon
    Yüzey
    integrali
    Partition
    of an interval
    Visual
    calculus
    Differential
    analyser
    Cavalieri's
    quadrature formula
    Yanıt, yapay zeka tarafından internetteki kaynaklara dayanarak oluşturulmuştur. Hatalar içerebilir.
    Yazeka hakkındatr.wikipedia.org
    • © 2025 Yandex
    • Gizlilik politikası
    • Kullanıcı sözleşmesi
    • Hata bildir
    • Şirket hakkında
    {"9jzn0":{"state":{"logoProps":{"url":"https://yandex.com.tr"},"formProps":{"action":"https://yandex.com.tr/search","searchLabel":"Bul"},"services":{"activeItemId":"yawiki","items":[{"url":"https://yandex.com.tr/gundem","title":"Gündem","id":"agenda"},{"url":"https://yandex.com.tr/shopping","title":"Alışveriş","id":"shopping"},{"url":"https://yandex.com.tr/finance","title":"Finans","id":"finance"},{"url":"https://yandex.com.tr/yacevap","title":"YaCevap","id":"answers"},{"url":"https://yandex.com.tr/travel","title":"Seyahat","id":"travel"},{"url":"https://yandex.com.tr/video/search?text=popüler+videolar","title":"Video","id":"video"},{"url":"https://yandex.com.tr/gorsel","title":"Görsel","id":"images"}]},"userProps":{"loggedIn":false,"ariaLabel":"Menü","plus":false,"birthdayHat":false,"child":false,"isBirthdayUserId":true,"className":"PortalHeader-User"},"userIdProps":{"flag":"skin","lang":"tr","host":"yandex.com.tr","project":"yawiki","queryParams":{"utm_source":"portal-yawiki"},"retpath":"https%3A%2F%2Fyandex.com.tr%2Fyawiki%2Fscience%2Friemann_integrali%2F0oCghydXczMTc3MhgEtWMhuw%3Ftext%3Dyawiki%26lr%3D213%26ncrnd%3D95065","tld":"com.tr"},"suggestProps":{"selectors":{"form":".HeaderForm","input":".HeaderForm-Input","submit":".HeaderForm-Submit","clear":".HeaderForm-Clear","layout":".HeaderForm-InputWrapper"},"suggestUrl":"https://yandex.com.tr/suggest/suggest-ya.cgi?show_experiment=222&show_experiment=224","deleteUrl":"https://yandex.com.tr/suggest-delete-text?srv=web&text_to_delete=","suggestPlaceholder":"Yapay zeka ile bul","platform":"desktop","hideKeyboardOnScroll":false,"additionalFormClasses":["mini-suggest_theme_tile","mini-suggest_overlay_tile","mini-suggest_expanding_yes","mini-suggest_prevent-empty_yes","mini-suggest_type-icon_yes","mini-suggest_personal_yes","mini-suggest_type-icon_yes","mini-suggest_rich_yes","mini-suggest_overlay_dark","mini-suggest_large_yes","mini-suggest_copy-fact_yes","mini-suggest_clipboard_yes","mini-suggest_turboapp_yes","mini-suggest_expanding_yes","mini-suggest_affix_yes","mini-suggest_carousel_yes","mini-suggest_traffic_yes","mini-suggest_re-request_yes","mini-suggest_source_yes","mini-suggest_favicon_yes","mini-suggest_more","mini-suggest_long-fact_yes","mini-suggest_hide-keyboard_yes","mini-suggest_clear-on-submit_yes","mini-suggest_focus-on-change_yes","mini-suggest_short-fact_yes","mini-suggest_app_yes","mini-suggest_grouping_yes","mini-suggest_entity-suggest_yes","mini-suggest_redesigned-navs_yes","mini-suggest_title-multiline_yes","mini-suggest_type-icon-wrapped_yes","mini-suggest_fulltext-highlight_yes","mini-suggest_fulltext-insert_yes","mini-suggest_lines_multi"],"counter":{"service":"yawiki_com_tr_desktop","url":"//yandex.ru/clck/jclck","timeout":300,"params":{"dtype":"stred","pid":"0","cid":"2873"}},"noSubmit":false,"formAction":"https://yandex.com.tr/search","tld":"com.tr","suggestParams":{"srv":"serp_com_tr_desktop","wiz":"TrWth","yu":"8042362801753193324","lr":213,"uil":"tr","fact":1,"v":4,"use_verified":1,"safeclick":1,"skip_clickdaemon_host":1,"rich_nav":1,"verified_nav":1,"rich_phone":1,"use_favicon":1,"nav_favicon":1,"mt_wizard":1,"history":1,"nav_text":1,"maybe_ads":1,"icon":1,"hl":1,"n":10,"portal":1,"platform":"desktop","mob":0,"extend_fw":1,"suggest_entity_desktop":"1","entity_enrichment":"1","entity_max_count":"5"},"disableWebSuggest":false},"context":{"query":"","reqid":"1753193325952431-4251277889569113551-balancer-l7leveler-kubr-yp-klg-19-BAL","lr":"213","aliceDeeplink":"{\"text\":\"yawiki\"}"},"baobab":{"parentNode":{"context":{"genInfo":{"prefix":"9jznw01-0-1"},"ui":"desktop","service":"yawiki","fast":{"name":"entitysearch","subtype":"header"}}}}},"type":"entitysearch","subtype":"header"},"9jzn1":{"state":{"links":[{"id":"main","title":"Ana Sayfa","url":"/yawiki","target":"_self"},{"id":"people","title":"İnsanlar","url":"/yawiki/people","target":"_self"},{"id":"film","title":"Sinema","url":"/yawiki/film","target":"_self"},{"id":"geography","title":"Coğrafya","url":"/yawiki/geography","target":"_self"},{"id":"organization","title":"Kurum","url":"/yawiki/organization","target":"_self"},{"id":"science","title":"Bilim","url":"/yawiki/science","target":"_self"},{"id":"device","title":"Aygıt","url":"/yawiki/device","target":"_self"},{"id":"music","title":"Müzik","url":"/yawiki/music","target":"_self"},{"id":"software","title":"Yazılım","url":"/yawiki/software","target":"_self"},{"id":"organism","title":"Canlılar","url":"/yawiki/organism","target":"_self"},{"id":"medicine","title":"İlaç","url":"/yawiki/medicine","target":"_self"},{"id":"event","title":"Olay","url":"/yawiki/event","target":"_self"},{"id":"food","title":"Gida","url":"/yawiki/food","target":"_self"},{"id":"auto","title":"Otomobil","url":"/yawiki/auto","target":"_self"},{"id":"chemical_compound","title":"Kimyasal Bileşim","url":"/yawiki/chemical_compound","target":"_self"},{"id":"disease","title":"Hastalık","url":"/yawiki/disease","target":"_self"},{"id":"others","title":"Diğerleri","url":"/yawiki/others","target":"_self"}],"activeLinkId":"science","title":"Kategoriler","baobab":{"parentNode":{"context":{"genInfo":{"prefix":"9jznw02-0-1"},"ui":"desktop","service":"yawiki","fast":{"name":"entitysearch","subtype":"header-categories"}}}}},"type":"entitysearch","subtype":"header-categories"},"9jzn2":{"state":{"className":"YawikiEntity-Breadcrumbs","items":[{"name":"Yawiki","url":"//yandex.com.tr/yawiki"},{"name":"Bilim","url":"//yandex.com.tr/yawiki/science"}],"baobab":{"parentNode":{"context":{"genInfo":{"prefix":"9jznw03-0-1"},"ui":"desktop","service":"yawiki","fast":{"name":"entitysearch","subtype":"object"}}}}},"type":"entitysearch","subtype":"object"},"9jzn3":{"state":{"baobab":{"parentNode":{"context":{"genInfo":{"prefix":"9jznw03-0-2"},"ui":"desktop","service":"yawiki","fast":{"name":"entitysearch","subtype":"object"}}}}},"type":"entitysearch","subtype":"object"},"9jzn4":{"state":{"wideGallery":[{"image":"//avatars.mds.yandex.net/get-entity_search/5735732/1182851012/SUx182","origWidth":480,"origHeight":270,"searchUrl":"https://yandex.com.tr/gorsel/search?rpt=simage&noreask=1&source=qa&text=Riemann+integrali+Matematiksel+Kavram&img_url=https%3A//i.ytimg.com/vi/8zGp-MSx2II/maxresdefault.jpg&lr=983&json_dump=searchdata.numdocs&json_dump=searchdata.images&nomisspell=1&srcskip=IMAGESQUICK&json_dump=reqparam.tld&relev=new_family_filter_disable=1&nocache=da&no-tests=da&pron=sm_mind&pron=smm_1.0","alt":"youtube.com sitesinden görsel","largeImage":"//avatars.mds.yandex.net/get-entity_search/5735732/1182851012/S600xU_2x","srcUrl":"https://www.youtube.com/watch?v=8zGp-MSx2II","srcHost":"youtube.com"},{"image":"//avatars.mds.yandex.net/get-entity_search/2310675/1177667683/SUx182","origWidth":480,"origHeight":270,"searchUrl":"https://yandex.com.tr/gorsel/search?rpt=simage&noreask=1&source=qa&text=Riemann+integrali+Matematiksel+Kavram&img_url=https%3A//i.ytimg.com/vi/jCr1afzwWSQ/maxresdefault.jpg%3Fsqp%3D-oaymwEmCIAKENAF8quKqQMa8AEB-AH-CYAC0AWKAgwIABABGGUgZShSMA8%3D%26rs%3DAOn4CLCyXRY6qietkZyuxpuPE0fb42K69A&lr=983&json_dump=searchdata.numdocs&json_dump=searchdata.images&nomisspell=1&srcskip=IMAGESQUICK&json_dump=reqparam.tld&relev=new_family_filter_disable=1&nocache=da&no-tests=da&pron=sm_mind&pron=smm_1.0","alt":"youtube.com sitesinden görsel","largeImage":"//avatars.mds.yandex.net/get-entity_search/2310675/1177667683/S600xU_2x","srcUrl":"https://www.youtube.com/live/jCr1afzwWSQ","srcHost":"youtube.com"},{"image":"//avatars.mds.yandex.net/get-entity_search/2162801/976548556/SUx182","origWidth":480,"origHeight":270,"searchUrl":"https://yandex.com.tr/gorsel/search?rpt=simage&noreask=1&source=qa&text=Riemann+integrali+Matematiksel+Kavram&img_url=https%3A//media.nagwa.com/584125141297/en/thumbnail_l.jpeg&lr=983&json_dump=searchdata.numdocs&json_dump=searchdata.images&nomisspell=1&srcskip=IMAGESQUICK&json_dump=reqparam.tld&relev=new_family_filter_disable=1&nocache=da&no-tests=da&pron=sm_mind&pron=smm_1.0","alt":"nagwa.com sitesinden görsel","largeImage":"//avatars.mds.yandex.net/get-entity_search/2162801/976548556/S600xU_2x","srcUrl":"https://www.nagwa.com/en/videos/584125141297/","srcHost":"nagwa.com"},{"image":"//avatars.mds.yandex.net/get-entity_search/1948726/1146447425/SUx182","origWidth":480,"origHeight":288,"searchUrl":"https://yandex.com.tr/gorsel/search?rpt=simage&noreask=1&source=qa&text=Riemann+integrali+Matematiksel+Kavram&img_url=https%3A//upload.wikimedia.org/wikipedia/commons/a/a3/Riemann_Integration_1.png%3F20051105162847&lr=983&json_dump=searchdata.numdocs&json_dump=searchdata.images&nomisspell=1&srcskip=IMAGESQUICK&json_dump=reqparam.tld&relev=new_family_filter_disable=1&nocache=da&no-tests=da&pron=sm_mind&pron=smm_1.0","alt":"commons.m.wikimedia.org sitesinden görsel","largeImage":"//avatars.mds.yandex.net/get-entity_search/1948726/1146447425/S600xU_2x","srcUrl":"https://commons.m.wikimedia.org/wiki/File:Riemann_Integration_1.png","srcHost":"commons.m.wikimedia.org"},{"image":"//avatars.mds.yandex.net/get-entity_search/1974363/1168828498/SUx182","origWidth":394,"origHeight":320,"searchUrl":"https://yandex.com.tr/gorsel/search?rpt=simage&noreask=1&source=qa&text=Riemann+integrali+Matematiksel+Kavram&img_url=https%3A//dcvp84mxptlac.cloudfront.net/diagrams2/CALC2-1-2-X_2.jpg&lr=983&json_dump=searchdata.numdocs&json_dump=searchdata.images&nomisspell=1&srcskip=IMAGESQUICK&json_dump=reqparam.tld&relev=new_family_filter_disable=1&nocache=da&no-tests=da&pron=sm_mind&pron=smm_1.0","alt":"studypug.com sitesinden görsel","largeImage":"//avatars.mds.yandex.net/get-entity_search/1974363/1168828498/S600xU_2x","srcUrl":"https://www.studypug.com/calculus-help/riemann-sum/","srcHost":"studypug.com"},{"image":"//avatars.mds.yandex.net/get-entity_search/5394633/1166008651/SUx182","origWidth":480,"origHeight":271,"searchUrl":"https://yandex.com.tr/gorsel/search?rpt=simage&noreask=1&source=qa&text=Riemann+integrali+Matematiksel+Kavram&img_url=https%3A//thumbor.evrimagaci.org/OnIsDU96GJ1wou_Rh0NAzjmsXbE%3D/1800x0/content/76ce9594-22ce-4a7a-a2da-b35b7610eb0d.jpeg&lr=983&json_dump=searchdata.numdocs&json_dump=searchdata.images&nomisspell=1&srcskip=IMAGESQUICK&json_dump=reqparam.tld&relev=new_family_filter_disable=1&nocache=da&no-tests=da&pron=sm_mind&pron=smm_1.0","alt":"evrimagaci.org sitesinden görsel","largeImage":"//avatars.mds.yandex.net/get-entity_search/5394633/1166008651/S600xU_2x","srcUrl":"https://evrimagaci.org/riemann-integrali-nedir-ne-ise-yarar-17944","srcHost":"evrimagaci.org"},{"image":"//avatars.mds.yandex.net/get-entity_search/2480722/1165978736/SUx182","origWidth":480,"origHeight":192,"searchUrl":"https://yandex.com.tr/gorsel/search?rpt=simage&noreask=1&source=qa&text=Riemann+integrali+Matematiksel+Kavram&img_url=https%3A//img.fusedlearning.com/img/stem/893/what-is-calculus-integration-rules-and-examples_12.jpg&lr=983&json_dump=searchdata.numdocs&json_dump=searchdata.images&nomisspell=1&srcskip=IMAGESQUICK&json_dump=reqparam.tld&relev=new_family_filter_disable=1&nocache=da&no-tests=da&pron=sm_mind&pron=smm_1.0","alt":"tr.fusedlearning.com sitesinden görsel","largeImage":"//avatars.mds.yandex.net/get-entity_search/2480722/1165978736/S600xU_2x","srcUrl":"https://tr.fusedlearning.com/what-is-calculus-integration-rules","srcHost":"tr.fusedlearning.com"}],"mainImage":{"image":"//avatars.mds.yandex.net/get-entity_search/1539949/1183368894/SUx182_2x","origWidth":480,"origHeight":288,"searchUrl":"https://yandex.com.tr/gorsel/search?rpt=simage&noreask=1&source=qa&text=Riemann+integrali+Matematiksel+Kavram&img_url=https%3A//upload.wikimedia.org/wikipedia/commons/a/af/Riemann_Integration_4.png&lr=983&json_dump=searchdata.numdocs&json_dump=searchdata.images&nomisspell=1&srcskip=IMAGESQUICK&json_dump=reqparam.tld&relev=new_family_filter_disable=1&nocache=da&no-tests=da&pron=sm_mind&pron=smm_1.0","alt":"tr.wiki34.com sitesinden görsel","largeImage":"//avatars.mds.yandex.net/get-entity_search/1539949/1183368894/S600xU_2x","srcUrl":"https://tr.wiki34.com/wiki/Integral_de_Riemann","srcHost":"tr.wiki34.com"},"imagesLink":"//yandex.com.tr/gorsel/search?text=Riemann%20integrali&stype=image&lr=213&parent-reqid=1753193325952431-4251277889569113551-balancer-l7leveler-kubr-yp-klg-19-BAL","name":"gallery","initialWidth":536,"height":226,"wrapInItem":false,"logParams":{"trailer":{},"poster":{}},"contextJsSrc":"//yandex.ru/ads/system/context.js","baobab":{"parentNode":{"context":{"genInfo":{"prefix":"9jznw03-0-4"},"ui":"desktop","service":"yawiki","fast":{"name":"entitysearch","subtype":"object"}}}}},"type":"entitysearch","subtype":"object"},"9jzn5":{"state":{"title":{"search_request":"Riemann integrali integral","entref":"0oEhFydXczMTc3MjpjdXN0b206MBgEegnEsG50ZWdyYWwzRDkB","text":"İntegral","url":"//yandex.com.tr/search?text=Riemann%20integrali%20integral&noreask=1&ento=0oEhFydXczMTc3MjpjdXN0b206MBgEegnEsG50ZWdyYWwzRDkB"},"logAttrs":{"subtype":"upper"},"items":[{"thumb":{"width":88,"height":88,"image":"//avatars.mds.yandex.net/get-entity_search/5735732/1180549528/S88x88Smart_2x","placeholder":"#FEFEFE","hover":{"type":"fade"}},"url":"/yawiki/science/lebesgue_integrali/0oCglydXcxNDE2NDcYBKwQU8M","logNodeAttrs":{"externalId":{"entity":"entity-collection","id":"ruw141647"},"index":0},"title":{"text":"Lebesgue integrali","lines":2,"maxLettersPerLine":9},"tooltipText":"Lebesgue integrali"},{"thumb":{"width":88,"height":88,"image":"//avatars.mds.yandex.net/get-entity_search/7983837/1180166450/S88x88Smart_2x","placeholder":"#000000","hover":{"type":"fade"}},"url":"/yawiki/science/integral/0oCglydXczNjU4MjEYBDrAUBg","logNodeAttrs":{"externalId":{"entity":"entity-collection","id":"ruw365821"},"index":1},"title":{"text":"İntegral","lines":2,"maxLettersPerLine":9},"tooltipText":"İntegral"},{"thumb":{"width":88,"height":88,"image":"//avatars.mds.yandex.net/get-entity_search/2269087/1182935015/S88x88_2x","placeholder":"#FCFCFC","hover":{"type":"fade"}},"url":"/yawiki/science/%C3%A7okkatl%C4%B1_integral/0oCgpydXcxMjA1NDU0GAS2A8JE","logNodeAttrs":{"externalId":{"entity":"entity-collection","id":"ruw1205454"},"index":2},"title":{"text":"Çokkatlı integral","lines":2,"maxLettersPerLine":9},"tooltipText":"Çokkatlı integral"},{"thumb":{"width":88,"height":88,"image":"//avatars.mds.yandex.net/get-entity_search/5503081/1182489457/S88x88Smart_2x","placeholder":"#FEFEFE","hover":{"type":"fade"}},"url":"/yawiki/science/ilkel_fonksiyon/0oCghydXczMjcwORgErLjFYQ","logNodeAttrs":{"externalId":{"entity":"entity-collection","id":"ruw32709"},"index":3},"title":{"text":"İlkel fonksiyon","lines":2,"maxLettersPerLine":9},"tooltipText":"İlkel fonksiyon"},{"thumb":{"width":88,"height":88,"image":"//avatars.mds.yandex.net/get-entity_search/11017462/1180945360/S88x88_2x","placeholder":"#F0F1F0","hover":{"type":"fade"}},"url":"/yawiki/science/y%C3%BCzey_integrali/0oCgpydXcxMjUzNzgwGAT43NzH","logNodeAttrs":{"externalId":{"entity":"entity-collection","id":"ruw1253780"},"index":4},"title":{"text":"Yüzey integrali","lines":2,"maxLettersPerLine":9},"tooltipText":"Yüzey integrali"},{"thumb":{"width":88,"height":88,"image":"//avatars.mds.yandex.net/get-entity_search/50039/119700600/S88x88Smart_2x","placeholder":"#FFFFFF","hover":{"type":"fade"}},"url":"//yandex.com.tr/search?text=Partition%20of%20an%20interval&noreask=1&ento=0oCgpydXcyNTI3NjY1EhFydXczMTc3MjpjdXN0b206MBgEegnEsG50ZWdyYWznptuN","logNodeAttrs":{"externalId":{"entity":"entity-collection","id":"ruw2527665"},"index":5},"title":{"text":"Partition of an interval","lines":2,"maxLettersPerLine":9},"tooltipText":"Partition of an interval"},{"thumb":{"width":88,"height":88,"image":"//avatars.mds.yandex.net/get-entity_search/141104/252837868/S88x88_2x","placeholder":"#F9F9F9","hover":{"type":"fade"}},"url":"//yandex.com.tr/search?text=Visual%20calculus&noreask=1&ento=0oCgtlbncxMDQ1ODcxNhIRcnV3MzE3NzI6Y3VzdG9tOjAYBHoJxLBudGVncmFs2tvMUQ","logNodeAttrs":{"externalId":{"entity":"entity-collection","id":"enw10458716"},"index":6},"title":{"text":"Visual calculus","lines":2,"maxLettersPerLine":9},"tooltipText":"Visual calculus"},{"thumb":{"width":88,"height":88,"image":"//avatars.mds.yandex.net/get-entity_search/117753/131805714/S88x88Smart_2x","placeholder":"#493C36","hover":{"type":"fade"}},"url":"//yandex.com.tr/search?text=Differential%20analyser&noreask=1&ento=0oCgpydXc1MzMyNjAzEhFydXczMTc3MjpjdXN0b206MBgEegnEsG50ZWdyYWx_ARPC","logNodeAttrs":{"externalId":{"entity":"entity-collection","id":"ruw5332603"},"index":7},"title":{"text":"Differential analyser","lines":2,"maxLettersPerLine":9},"tooltipText":"Differential analyser"},{"thumb":{"width":88,"height":88,"image":"//avatars.mds.yandex.net/get-entity_search/69916/78050259/S88x88Smart_2x","placeholder":"#000000","hover":{"type":"fade"}},"url":"//yandex.com.tr/search?text=Cavalieris%20quadrature%20formula&noreask=1&ento=0oCgtlbnczMDgzOTc0MBIRcnV3MzE3NzI6Y3VzdG9tOjAYBHoJxLBudGVncmFsDBiqOQ","logNodeAttrs":{"externalId":{"entity":"entity-collection","id":"enw30839740"},"index":8},"title":{"text":"Cavalieri's quadrature formula","lines":2,"maxLettersPerLine":9},"tooltipText":"Cavalieri's quadrature formula"}],"list":{"scroller":{"arrowsAlignHeight":88},"type":"upper"},"lazyLimit":6,"wrapInItem":false,"baobab":{"parentNode":{"context":{"genInfo":{"prefix":"9jznw03-0-6"},"ui":"desktop","service":"yawiki","fast":{"name":"entitysearch","subtype":"object"}}}}},"type":"entitysearch","subtype":"object"},"9jzn6":{"state":{"generalLinks":[{"id":"privacy-policy","text":"Gizlilik politikası","url":"https://yandex.com.tr/legal/privacy_policy/"},{"id":"terms-of-service","text":"Kullanıcı sözleşmesi","url":"https://yandex.com.tr/legal/tos/"},{"id":"report-error","text":"Hata bildir","url":"https://forms.yandex.com.tr/surveys/13748122.01a6645a1ef15703c9b82a7b6c521932ddc0e3f7/"},{"id":"about-company","text":"Şirket hakkında","url":"https://yandex.com.tr/project/portal/contacts/"}],"copyright":{"url":"https://yandex.com.tr","currentYear":2025},"socialLinks":[{"type":"tiktok","url":"https://redirect.appmetrica.yandex.com/serve/677728751613663494","title":"TikTok"},{"url":"https://redirect.appmetrica.yandex.com/serve/173325632992778150","type":"youtube","title":"Youtube"},{"url":"https://redirect.appmetrica.yandex.com/serve/677728793472889615","type":"facebook","title":"Facebook"},{"url":"https://redirect.appmetrica.yandex.com/serve/1182131906657966033","type":"instagram","title":"Instagram"},{"url":"https://redirect.appmetrica.yandex.com/serve/893945194569821080","type":"x","title":"X"}],"categoriesLink":[],"baobab":{"parentNode":{"context":{"genInfo":{"prefix":"9jznw04-0-1"},"ui":"desktop","service":"yawiki","fast":{"name":"portal","subtype":"footer"}}}}},"type":"portal","subtype":"footer"}}