• Buradasın

    Yapay zeka circle nedir?

    Yazeka

    Arama sonuçlarına göre oluşturuldu

    Circle to SearchGoogle’ın yapay zeka tabanlı arama özelliğidir 2.
    Bu özellik, kullanıcıların doğrudan ekranda görüntülenen içeriği hızlı ve basit bir şekilde aramasına olanak tanır 2. Metin, görsel veya diğer öğeleri aramak için sadece daire içine almak, dokunmak veya vurgulamak yeterlidir 2.
    Circle to Search özelliği şu anda aşağıdaki cihazlarda kullanılabilmektedir:
    • Samsung Galaxy S24 serisi 1;
    • Android işletim sistemini kullanan diğer bazı akıllı telefon modelleri 2;
    • Nothing Phone (2), Nothing Phone (2a) ve Nothing Phone (2a) Plus 2.
    5 kaynaktan alınan bilgiyle göre:

    Konuyla ilgili materyaller

    Genel yapay zeka nedir?

    Genel yapay zeka (General AI), bilgisayar sistemlerinin tüm zihinsel görevlerde insanlardan daha başarılı olması anlamına gelir. Bu tür bir yapay zeka, karmaşık sorunları çözebilir, belirsiz durumlarda karar alabilir ve mevcut durumu değerlendirirken önceki bilgilerinden yararlanabilir. Genel yapay zekanın, yaratıcılık ve hayal gücü açısından insanlarla aynı düzeyde olacağı ve dar yapay zekaya göre çok daha geniş bir görev yelpazesini başarıyla yerine getirebileceği düşünülmektedir. Ancak, genel yapay zeka henüz teorik bir kavram olup, tam olarak geliştirilmemiştir.

    Yapay zeka nasıl eğitilir?

    Yapay zeka (YZ) eğitimi, büyük miktarda veri ve karmaşık algoritmalar kullanılarak gerçekleştirilir. İşte YZ modelinin eğitilmesi için genel adımlar: 1. Problem Tanımlama: YZ'nin hangi sorunu çözeceği veya görevi yerine getireceği belirlenir. 2. Veri Toplama: Metin, resim, ses veya video gibi farklı formatlarda ilgili veriler toplanır. 3. Veri Ön İşleme: Toplanan veriler, YZ modelinin kullanabileceği bir formata dönüştürülür. 4. Model Seçimi: Sorununuza ve verilerinize uygun bir YZ modeli seçilir. 5. Model Eğitimi: Seçilen model, toplanan veriler üzerinde eğitilir. 6. Model Değerlendirmesi: Eğitilmiş model, yeni veriler üzerinde test edilerek performansı değerlendirilir. 7. Model Dağıtımı: Model, üretim ortamına dağıtılır ve kullanıcılara sunulur. YZ eğitimi için araçlar ve kütüphaneler mevcuttur ve bu süreç, bilgisayar bilimi, matematik, istatistik ve psikoloji gibi alanlarda bilgi sahibi olmayı gerektirir.

    Yapay zeka türleri nelerdir?

    Yapay zeka (YZ) türleri genel olarak şu şekilde sınıflandırılabilir: 1. Geleneksel Yapay Zeka: Belirli görevleri otomatikleştirir ve optimize eder, önceden tanımlanmış kurallara ve algoritmalara dayanır. 2. Tahmine Dayalı Yapay Zeka: Geçmiş verilerin analizine dayanarak sonuçları tahmin eder. 3. Konuşma Temelli Yapay Zeka: İnsanlar ve makineler arasında doğal dil etkileşimlerini kolaylaştırır, sohbet robotlarını ve sanal asistanları mümkün kılar. 4. Üretken Yapay Zeka: Metin, görüntü, kod ve diğer çıktıları oluşturur, denetimsiz öğrenme teknikleri kullanır. 5. Derin Öğrenme: Bilgiyi katmanlar halinde işleyen ve karmaşık problemleri çözebilen yapay zeka modelidir. 6. Uzman Sistemler: Belirli bir alanda bilgi bazlı karar verme yeteneğine sahiptir. Ayrıca, dar yapay zeka, genel yapay zeka ve süper yapay zeka gibi daha geniş sınıflandırmalar da mevcuttur.

    Yapay zeka ve yatay zeka arasındaki fark nedir?

    Yapay zeka (YZ) ve yatay zeka (YZ) arasındaki temel farklar şunlardır: 1. Doğa: YZ, makinelerin insan benzeri görevleri yerine getirebilmesi için tasarlanan bir bilgisayar bilimi dalıdır. 2. Odak Alanı: YZ, veri analizi, algoritmalar ve örüntü tanıma gibi konulara odaklanır. 3. Çalışma Prensibi: YZ, veriye dayalı öğrenme ve istatistiksel modeller kullanır. 4. Amaç: YZ'nin amacı, belirli görevleri daha hızlı ve verimli bir şekilde yerine getirmektir.

    LLM yapay zeka nedir?

    LLM (Large Language Model), makine öğrenmesi teknikleriyle eğitilmiş, doğal dili anlayan ve üreten ileri düzey yapay zeka modelleridir. Bu modeller, derin öğrenme mimarileri ve dönüştürücüler gibi sinir ağı çerçeveleri kullanarak farklı veri kaynaklarından gelen bilgileri işler ve birleştirir. LLM'lerin bazı kullanım alanları: - Metin oluşturma: Hikayeler, makaleler, şiirler gibi metinler oluşturmak için kullanılır. - Çeviri: Farklı diller arasında yüksek doğruluk oranına sahip çeviriler yapar. - Soru-cevap sistemleri: Kullanıcılardan gelen soruları anlayarak uygun cevaplar üretir. - Duygu analizi: Metinlerdeki duygusal tonları tespit eder. LLM'lerin zorlukları: - Önemli miktarda bilgisayar kaynağı, depolama ve enerji tüketimi gerektirir. - Eğitim verilerindeki yanlılıklar, modelin çıktılarında da yanlılıklara neden olabilir.