XGBoost'un bu kadar iyi olmasının birkaç nedeni vardır: 1. Gradient Boosting Algoritması: XGBoost, birden fazla zayıf öğreniciyi (karar ağacı) birleştirerek güçlü bir öngörücü model oluşturur. Bu, modelin karmaşık desenleri ve ilişkileri yakalamasını sağlar. 2. Eksik Değerlerin Yönetimi: XGBoost, sayısal, kategorik ve eksik verileri işleyebilir ve eksik değerleri otomatik olarak ele alır. 3. Hyperparametre Ayarı: Modelin performansını optimize etmek için geniş bir hyperparametre yelpazesi sunar. Bu parametreler, ağaç sayısı, öğrenme hızı ve maksimum ağaç derinliği gibi çeşitli yönleri kontrol eder. 4. Düzenlileştirme: Overfitting'i önlemek için L1 ve L2 düzenlileştirme tekniklerini kullanır. 5. Paralel İşleme: Büyük datasets'leri verimli bir şekilde işlemek için paralel işleme ve dağıtılmış hesaplama desteği sunar. 6. Başarı Geçmişi: Finans, sağlık, e-ticaret gibi çeşitli alanlarda geniş çapta uygulanmış ve birçok Kaggle yarışmasında başarılı olmuştur.