Fourier Dönüşümü ve Ters Fourier Dönüşümü'nün Özellikleri: Fourier Dönüşümü: 1. Lineerlik: Fourier Dönüşümü lineer bir işlemdir. 2. Zaman Kayması: g(t) fonksiyonu zamanda a reel sayısı kadar kaydırıldığında, Fourier dönüşümünün frekans içeriği ve güç spektrumunun genliği değişmez, sadece evresi değişir. 3. Ölçekleme: g(t) fonksiyonu bir c reel sayısı ile ölçeklendirildiğinde, Fourier dönüşümü de aynı şekilde ölçeklenir. 4. Türev: g(t) fonksiyonunun türevinin Fourier dönüşümü, j2πfX(f) ile verilir, burada X(f), g(t)'nin Fourier Dönüşümü'dür. 5. Konvolüsyon: İki fonksiyonun (g(t) ve h(t)) konvolüsyonunun Fourier Dönüşümü, bireysel Fourier Dönüşümlerinin çarpımına eşittir. Ters Fourier Dönüşümü: 1. G(f)'ten g(t)'ye Dönüşüm: Fourier Dönüşümü ile g(t)'den G(f)'e (zaman tanım kümesinden frekans tanım kümesine) dönüşüm sağlanır. 2. Parseval Teoremi: G(f), g(t)'nin Fourier Dönüşümü olmak üzere, g(t) ve G(f)'nin içerdikleri toplam enerji (güç) aynıdır.