• Buradasın

    5x-15=90 denklemi nasıl çözülür?

    Yazeka

    Arama sonuçlarına göre oluşturuldu

    5x - 15 = 90 denklemi şu şekilde çözülür:
    1. Bilinmeyenleri içeren terimleri bir tarafa, bilinenleri diğer tarafa taşıyın: 5x = 90 + 15 14.
    2. İşlemleri yapın: 5x = 105 1.
    3. Her iki tarafı da bilinmeyenin katsayısına bölün: x = 105 / 5 1.
    4. Sonucu bulun: x = 21 1.
    5 kaynaktan alınan bilgiyle göre:

    Konuyla ilgili materyaller

    Denklemler nasıl çözülür?

    Denklemler, farklı yöntemlerle çözülebilir: 1. İkame Yöntemi: Bilinmeyenlerden birinin katsayı değerinin 1'e eşit olduğu durumlarda önerilir. - Bilinmeyen bir miktarı iki denklemden birinden ayırın. - İlk denklemden çıkardığınız bilinmeyene eşdeğer ifadeyi diğer denklemde yerine koyun. - Elde ettiğiniz denklemdeki zıt bilinmeyenleri silin. 2. Eşleştirme Yöntemi: Aynı değişkenin iki denklemde izole edilmesi ve ardından elde edilen iki ifadenin eşleştirilmesinden oluşur. - İki denklemde seçtiğimiz bilinmeyenleri izole ediyoruz. - Eşdeğer ifadeleri bu bilinmeyene benzetiyoruz. - Denklemi normal şekilde çözüyoruz. 3. İndirgeme Yöntemi: Her iki denklemin iki sayı ile çarpılmasına dayanır. - İki denklemdeki iki değişkenden biri için aynı katsayıyı elde etmeyi mümkün kılan ancak zıt işaretli iki sayı bulun. - Bu bilinmeyeni ilgili katsayılarıyla birlikte ortadan kaldırmak için denklemler çıkarılır veya eklenir. - Kalan denklem çözülür. 4. Grafik Yöntemi: Denklemleri y = mx + b biçiminde yapılandırarak, iki fonksiyonun kesişim noktalarının koordinatlarını bilinmeyenlerle ilişkilendirir.

    2.dereceden denklemler nasıl çözülür?

    İkinci dereceden denklemler iki ana yöntemle çözülebilir: 1. Çarpanlara Ayırma Yöntemi: Denklemin çarpanlarına ayrılması durumunda, her bir parantezin 0'a eşitlenmesi çözüm kümesini verir. Örnek: x² + 5x – 6 = 0 denklemi, (x + 2)(x – 3) = 0 şeklinde çarpanlara ayrılabilir ve kökleri -2 ve -3 olur. 2. Diskriminant Yöntemi: Denklemin diskriminantı Δ = b² – 4ac ile hesaplanır ve üç durum söz konusudur: - Δ < 0 ise, denklemin reel sayılarda kökü yoktur. - Δ = 0 ise, denklemin çift katlı (eşit) iki kökü vardır. - Δ > 0 ise, denklemin birbirinden farklı iki kökü vardır. Ayrıca, kareyi tamamlama yöntemi de ikinci dereceden denklemlerin çözümünde kullanılabilir.