Alt ve üst üçgen matrislerin determinantı, ana köşegen üzerindeki elemanların çarpımına eşittir. Üst üçgen matrisin determinantı: Üst üçgen matrisin determinantı, ana köşegenin altındaki elemanları sıfır olan bir matris olduğu için, sadece ana köşegendeki elemanların çarpımı ile bulunur. Örneğin, \[ \begin{bmatrix} 2 & 5 & -6 \\ 0 & 4 & 9 \\ 0 & 0 & 3 \end{bmatrix} \] matrisinin determinantı, 2 × 4 × 3 = 24 olarak hesaplanır. Alt üçgen matrisin determinantı: Alt üçgen matrisin determinantı, ana köşegenin üzerindeki her öğesi sıfır olan bir matris olduğu için, yine ana köşegendeki elemanların çarpımı ile bulunur. Örneğin, \[ \begin{bmatrix} 1 & 4 & 4 & 0 & 0 \\ 2 & 2 & 8 & 1 & -3 \\ 1 & 0 & -3 & 1 & 4 \\ -2 & 1 & 0 & 4 & -1 \\ -1 & 4 & -3 & 1 & 3 \end{bmatrix} \] matrisinin determinantı, 1 × (-1) × (-3) × 4 = -12 olarak hesaplanır.